BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 15817499)

  • 1. Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia.
    Bourbon J; Boucherat O; Chailley-Heu B; Delacourt C
    Pediatr Res; 2005 May; 57(5 Pt 2):38R-46R. PubMed ID: 15817499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional study of alveologenesis in mouse lung.
    Branchfield K; Li R; Lungova V; Verheyden JM; McCulley D; Sun X
    Dev Biol; 2016 Jan; 409(2):429-41. PubMed ID: 26632490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of increased pulmonary interleukin-6 with the priming effect of intra-amniotic lipopolysaccharide on hyperoxic lung injury in a rat model of bronchopulmonary dysplasia.
    Kim DH; Choi CW; Kim EK; Kim HS; Kim BI; Choi JH; Lee MJ; Yang EG
    Neonatology; 2010 Jun; 98(1):23-32. PubMed ID: 19955834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia.
    Popova AP; Bentley JK; Cui TX; Richardson MN; Linn MJ; Lei J; Chen Q; Goldsmith AM; Pryhuber GS; Hershenson MB
    Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L231-9. PubMed ID: 24907056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoids increase lung elastin expression but fail to alter morphology or angiogenesis genes in premature ventilated baboons.
    Pierce RA; Joyce B; Officer S; Heintz C; Moore C; McCurnin D; Johnston C; Maniscalco W
    Pediatr Res; 2007 Jun; 61(6):703-9. PubMed ID: 17426644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress.
    Wagenaar GT; ter Horst SA; van Gastelen MA; Leijser LM; Mauad T; van der Velden PA; de Heer E; Hiemstra PS; Poorthuis BJ; Walther FJ
    Free Radic Biol Med; 2004 Mar; 36(6):782-801. PubMed ID: 14990357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn.
    Lassus P; Turanlahti M; Heikkilä P; Andersson LC; Nupponen I; Sarnesto A; Andersson S
    Am J Respir Crit Care Med; 2001 Nov; 164(10 Pt 1):1981-7. PubMed ID: 11734455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial Suppression of Transforming Growth Factor-β Signaling and Loss of TGFBI Causes Early Alveolar Structural Defects Resulting in Bronchopulmonary Dysplasia.
    Ahlfeld SK; Wang J; Gao Y; Snider P; Conway SJ
    Am J Pathol; 2016 Apr; 186(4):777-93. PubMed ID: 26878215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen Disrupts Human Fetal Lung Mesenchymal Cells. Implications for Bronchopulmonary Dysplasia.
    Möbius MA; Freund D; Vadivel A; Koss S; McConaghy S; Ohls RK; Rüdiger M; Thébaud B
    Am J Respir Cell Mol Biol; 2019 May; 60(5):592-600. PubMed ID: 30562051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide donor restores lung growth factor and receptor expression in hyperoxia-exposed rat pups.
    Lopez E; Boucherat O; Franco-Montoya ML; Bourbon JR; Delacourt C; Jarreau PH
    Am J Respir Cell Mol Biol; 2006 Jun; 34(6):738-45. PubMed ID: 16484688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IL-1beta disrupts postnatal lung morphogenesis in the mouse.
    Bry K; Whitsett JA; Lappalainen U
    Am J Respir Cell Mol Biol; 2007 Jan; 36(1):32-42. PubMed ID: 16888287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deferoxamine Improves Alveolar and Pulmonary Vascular Development by Upregulating Hypoxia-inducible Factor-1α in a Rat Model of Bronchopulmonary Dysplasia.
    Choi CW; Lee J; Lee HJ; Park HS; Chun YS; Kim BI
    J Korean Med Sci; 2015 Sep; 30(9):1295-301. PubMed ID: 26339170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia.
    Bhatt AJ; Pryhuber GS; Huyck H; Watkins RH; Metlay LA; Maniscalco WM
    Am J Respir Crit Care Med; 2001 Nov; 164(10 Pt 1):1971-80. PubMed ID: 11734454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular mediators in chronic lung disease of infancy: role of endothelial monocyte activating polypeptide II (EMAP II).
    Lal CV; Schwarz MA
    Birth Defects Res A Clin Mol Teratol; 2014 Mar; 100(3):180-8. PubMed ID: 24619875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury.
    Hirakawa H; Pierce RA; Bingol-Karakoc G; Karaaslan C; Weng M; Shi GP; Saad A; Weber E; Mariani TJ; Starcher B; Shapiro SD; Cataltepe S
    Am J Respir Crit Care Med; 2007 Oct; 176(8):778-85. PubMed ID: 17673697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA 219-5p inhibits alveolarization by reducing platelet derived growth factor receptor-alpha.
    Freeman A; Qiao L; Olave N; Rezonzew G; Gentle S; Halloran B; Pryhuber GS; Gaggar A; Tipple TE; Ambalavanan N; Lal CV
    Respir Res; 2021 Feb; 22(1):57. PubMed ID: 33596914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Mobility Group Box-1 Protein Disrupts Alveolar Elastogenesis of Hyperoxia-Injured Newborn Lungs.
    Yu B; Li X; Wan Q; Han W; Deng C; Guo C
    J Interferon Cytokine Res; 2016 Mar; 36(3):159-68. PubMed ID: 26982166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant defenses in the preterm lung: role for hypoxia-inducible factors in BPD?
    Asikainen TM; White CW
    Toxicol Appl Pharmacol; 2005 Mar; 203(2):177-88. PubMed ID: 15710178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.
    Velten M; Heyob KM; Rogers LK; Welty SE
    J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CPEB2-activated PDGFRα mRNA translation contributes to myofibroblast proliferation and pulmonary alveologenesis.
    Lai YT; Chao HW; Lai AC; Lin SH; Chang YJ; Huang YS
    J Biomed Sci; 2020 Apr; 27(1):52. PubMed ID: 32295602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.