These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 15817632)
41. Inhibition of Na-K pump current in guinea pig ventricular myocytes by dihydroouabain occurs at high- and low-affinity sites. Mogul DJ; Rasmussen HH; Singer DH; Ten Eick RE Circ Res; 1989 Jun; 64(6):1063-9. PubMed ID: 2541941 [TBL] [Abstract][Full Text] [Related]
42. Na+ influx and Na(+)-K+ pump activation during short-term exposure of cardiac myocytes to aldosterone. Mihailidou AS; Buhagiar KA; Rasmussen HH Am J Physiol; 1998 Jan; 274(1):C175-81. PubMed ID: 9458726 [TBL] [Abstract][Full Text] [Related]
43. Ionic diffusion in voltage-clamped isolated cardiac myocytes. Implications for Na,K-pump studies. Mogul DJ; Singer DH; Ten Eick RE Biophys J; 1989 Sep; 56(3):565-77. PubMed ID: 2551408 [TBL] [Abstract][Full Text] [Related]
44. Angiotensin regulates the selectivity of the Na+-K+ pump for intracellular Na+. Buhagiar KA; Hansen PS; Gray DF; Mihailidou AS; Rasmussen HH Am J Physiol; 1999 Sep; 277(3):C461-8. PubMed ID: 10484333 [TBL] [Abstract][Full Text] [Related]
45. Regulation of an inwardly rectifying K+ channel by nitric oxide in cultured human proximal tubule cells. Nakamura K; Hirano J; Kubokawa M Am J Physiol Renal Physiol; 2004 Sep; 287(3):F411-7. PubMed ID: 15140759 [TBL] [Abstract][Full Text] [Related]
46. Quaternary organic amines inhibit Na,K pump current in a voltage-dependent manner: direct evidence of an extracellular access channel in the Na,K-ATPase. Peluffo RD; Hara Y; Berlin JR J Gen Physiol; 2004 Mar; 123(3):249-63. PubMed ID: 14981136 [TBL] [Abstract][Full Text] [Related]
47. Nitric oxide inhibits the dopamine-induced K+ current via guanylate cyclase in Aplysia neurons. Sawada M; Ichinose M; Stefano GB J Neurosci Res; 1997 Nov; 50(3):450-6. PubMed ID: 9364330 [TBL] [Abstract][Full Text] [Related]
48. Inhibition of the glutamate-induced K(+) current in identified Onchidium neurons by nitric oxide donors. Sawada M; Ichinose M; Anraku M J Neurosci Res; 2000 Jun; 60(5):642-8. PubMed ID: 10820435 [TBL] [Abstract][Full Text] [Related]
49. Depolarization increases the apparent affinity of the Na+-K+ pump to cytoplasmic Na+ in isolated guinea-pig ventricular myocytes. Barmashenko G; Kockskämper J; Glitsch HG J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):691-8. PubMed ID: 10358110 [TBL] [Abstract][Full Text] [Related]
50. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes. Lu FM; Hilgemann DW J Gen Physiol; 2017 Jul; 149(7):727-749. PubMed ID: 28606910 [TBL] [Abstract][Full Text] [Related]
51. Characterization of the electrogenic Na+-K+ pump in horizontal cells isolated from the carp retina. Shimura M; Tamai M; Zushi I; Akaike N Neuroscience; 1998 Sep; 86(1):233-40. PubMed ID: 9692757 [TBL] [Abstract][Full Text] [Related]
52. Redox-dependent regulation of the Na⁺-K⁺ pump: new twists to an old target for treatment of heart failure. Liu CC; Fry NA; Hamilton EJ; Chia KK; Garcia A; Karimi Galougahi K; Figtree GA; Clarke RJ; Bundgaard H; Rasmussen HH J Mol Cell Cardiol; 2013 Aug; 61():94-101. PubMed ID: 23727392 [TBL] [Abstract][Full Text] [Related]
53. Soluble guanylyl cyclase activator YC-1 protects white matter axons from nitric oxide toxicity and metabolic stress, probably through Na(+) channel inhibition. Garthwaite G; Goodwin DA; Neale S; Riddall D; Garthwaite J Mol Pharmacol; 2002 Jan; 61(1):97-104. PubMed ID: 11752210 [TBL] [Abstract][Full Text] [Related]
54. Charge movements via the cardiac Na,K-ATPase. Gadsby DC; Nakao M; Bahinski A; Nagel G; Suenson M Acta Physiol Scand Suppl; 1992; 607():111-23. PubMed ID: 1333148 [TBL] [Abstract][Full Text] [Related]
55. Investigation of the vasorelaxant effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) and diethylamine/nitric oxide (DEA/NO) on the human radial artery used as coronary bypass graft. Berkan O; Bagcivan I; Kaya T; Yildirim K; Yildirim S; Doğan K Can J Physiol Pharmacol; 2007 May; 85(5):521-6. PubMed ID: 17632587 [TBL] [Abstract][Full Text] [Related]
56. Pharmacology of the nitric oxide receptor, soluble guanylyl cyclase, in cerebellar cells. Bellamy TC; Garthwaite J Br J Pharmacol; 2002 May; 136(1):95-103. PubMed ID: 11976273 [TBL] [Abstract][Full Text] [Related]
57. Nitric oxide modulates Na+, K+-ATPase activity through cyclic GMP pathway in proximal rat trachea. de Oliveira Elias M; Tavares de Lima W; Vannuchi YB; Marcourakis T; da Silva ZL; Trezena AG; Scavone C Eur J Pharmacol; 1999 Feb; 367(2-3):307-14. PubMed ID: 10079006 [TBL] [Abstract][Full Text] [Related]
58. [Potentiation of nitric oxide-dependent activation of soluble guanylate cyclase by levomycetin, tetracycline, and oxolin]. Shchegolev AIu; Sidorova TA; Severina IS Biomed Khim; 2009; 55(3):331-7. PubMed ID: 19663005 [TBL] [Abstract][Full Text] [Related]
59. Relaxing effect of a new ruthenium complex nitric oxide donor on airway smooth muscle of an experimental model of asthma in rats. Castro PF; de Andrade DL; Reis Cde F; Costa SH; Batista AC; da Silva RS; Rocha ML Clin Exp Pharmacol Physiol; 2016 Feb; 43(2):221-9. PubMed ID: 26662887 [TBL] [Abstract][Full Text] [Related]
60. Nitric oxide stimulates a large-conductance Ca-activated K+ channel in human skin fibroblasts through protein kinase G pathway. Lim I; Yun J; Kim S; Lee C; Seo S; Kim T; Bang H Skin Pharmacol Physiol; 2005; 18(6):279-87. PubMed ID: 16145282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]