These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15818565)

  • 41. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp.
    Park D; Yun YS; Park JM
    Chemosphere; 2005 Sep; 60(10):1356-64. PubMed ID: 16054904
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1.
    Polti MA; García RO; Amoroso MJ; Abate CM
    J Basic Microbiol; 2009 Jun; 49(3):285-92. PubMed ID: 19025876
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biological sulfide oxidation using autotrophic Thiobacillus sp.: evaluation of different immobilization methods and bioreactors.
    Ravichandra P; Gopal M; Annapurna J
    J Appl Microbiol; 2009 Apr; 106(4):1280-91. PubMed ID: 19187143
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biological ferrous sulfate oxidation by A. ferrooxidans immobilized on chitosan beads.
    Giaveno A; Lavalle L; Guibal E; Donati E
    J Microbiol Methods; 2008 Mar; 72(3):227-34. PubMed ID: 18294712
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estimating the dual-enzyme kinetic parameters for Cr (VI) reduction by Shewanella oneidensis MR-1 from soil column experiments.
    Hossain MA; Alam M; Yonge DR
    Water Res; 2005 Sep; 39(14):3342-8. PubMed ID: 16045962
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies on the biosorption of hexavalent chromium from aqueous solutions by using boiled mucilaginous seeds of Ocimum americanum.
    Lakshmanraj L; Gurusamy A; Gobinath MB; Chandramohan R
    J Hazard Mater; 2009 Sep; 169(1-3):1141-5. PubMed ID: 19406568
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanisms of the removal of hexavalent chromium by biomaterials or biomaterial-based activated carbons.
    Park D; Park JM; Yun YS
    J Hazard Mater; 2006 Sep; 137(2):1254-7. PubMed ID: 16713082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromate reduction by PVA-alginate immobilized Streptomyces griseus in a bioreactor.
    Poopal AC; Laxman RS
    Biotechnol Lett; 2009 Jan; 31(1):71-6. PubMed ID: 18777011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mathematical models applied to the Cr(III) and Cr(VI) breakthrough curves.
    Ramirez C M; Pereira da Silva M; Ferreira L SG; Vasco E O
    J Hazard Mater; 2007 Jul; 146(1-2):86-90. PubMed ID: 17276593
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes.
    Pang Y; Zeng GM; Tang L; Zhang Y; Liu YY; Lei XX; Wu MS; Li Z; Liu C
    Bioresour Technol; 2011 Nov; 102(22):10733-6. PubMed ID: 21937224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition.
    Chang IS; Kim BH
    Chemosphere; 2007 Jun; 68(2):218-26. PubMed ID: 17337035
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biogeochemical influence on transport of chromium in manganese sediments: experimental and modeling approaches.
    Guha H
    J Contam Hydrol; 2004 May; 70(1-2):1-36. PubMed ID: 15068867
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of bisphenol A induced by Fe(III)-OH complexes in water.
    Liu Y; Deng L; Chen Y; Wu F; Deng N
    J Hazard Mater; 2007 Jan; 139(2):399-402. PubMed ID: 16844289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of plants on the removal of hexavalent chromium in wetland sediments.
    Xu S; Jaffé PR
    J Environ Qual; 2006; 35(1):334-41. PubMed ID: 16397109
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil.
    Sarangi A; Krishnan C
    Bioresour Technol; 2008 Jul; 99(10):4130-7. PubMed ID: 17920879
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater.
    Zakaria ZA; Zakaria Z; Surif S; Ahmad WA
    J Hazard Mater; 2007 Jul; 146(1-2):30-8. PubMed ID: 17188812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Column study on Cr(VI)-reduction using the brown seaweed Ecklonia biomass.
    Park D; Yun YS; Lee DS; Lim SR; Park JM
    J Hazard Mater; 2006 Oct; 137(3):1377-84. PubMed ID: 16647206
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial culture dynamics and chromium (VI) removal in packed-column microcosm reactors.
    Molokwane PE; Nkhalambayausi-Chirwa EM
    Water Sci Technol; 2009; 60(2):381-8. PubMed ID: 19633380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using non-invasive magnetic resonance imaging (MRI) to assess the reduction of Cr(VI) using a biofilm-palladium catalyst.
    Beauregard DA; Yong P; Macaskie LE; Johns ML
    Biotechnol Bioeng; 2010 Sep; 107(1):11-20. PubMed ID: 20506297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.