BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 15819604)

  • 1. The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover.
    Miller P; Zhabotinsky AM; Lisman JE; Wang XJ
    PLoS Biol; 2005 Apr; 3(4):e107. PubMed ID: 15819604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system.
    Zhabotinsky AM
    Biophys J; 2000 Nov; 79(5):2211-21. PubMed ID: 11053103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switching characteristics of a model for biochemical-reaction networks describing autophosphorylation versus dephosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Okamoto H; Ichikawa K
    Biol Cybern; 2000 Jan; 82(1):35-47. PubMed ID: 10650906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of discrete memory states to stochastic fluctuations in neuronal systems.
    Miller P; Wang XJ
    Chaos; 2006 Jun; 16(2):026109. PubMed ID: 16822041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling.
    Bradshaw JM; Kubota Y; Meyer T; Schulman H
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10512-7. PubMed ID: 12928489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.
    Lisman J; Raghavachari S
    Brain Res; 2015 Sep; 1621():51-61. PubMed ID: 25511992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular basis of CaMKII function in synaptic and behavioural memory.
    Lisman J; Schulman H; Cline H
    Nat Rev Neurosci; 2002 Mar; 3(3):175-90. PubMed ID: 11994750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical attributes that affect CaMKII activation deduced with a novel spatial stochastic simulation approach.
    Li X; Holmes WR
    PLoS Comput Biol; 2018 Feb; 14(2):e1005946. PubMed ID: 29401454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The delicate bistability of CaMKII.
    Michalski PJ
    Biophys J; 2013 Aug; 105(3):794-806. PubMed ID: 23931327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function.
    Hudmon A; Schulman H
    Annu Rev Biochem; 2002; 71():473-510. PubMed ID: 12045104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanism for synaptic frequency detection through autophosphorylation of CaM kinase II.
    Dosemeci A; Albers RW
    Biophys J; 1996 Jun; 70(6):2493-501. PubMed ID: 8744289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaM-kinase II dephosphorylates Thr(286) by a reversal of the autophosphorylation reaction.
    Kim SA; Hudmon A; Volmer A; Waxham MN
    Biochem Biophys Res Commun; 2001 Apr; 282(3):773-80. PubMed ID: 11401530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+/calmodulin-dependent protein kinase II is reversibly autophosphorylated, inactivated and made sedimentable by acute neuronal excitation in rats in vivo.
    Yamagata Y; Obata K
    J Neurochem; 2004 Nov; 91(3):745-54. PubMed ID: 15485503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II.
    Hudmon A; Schulman H
    Biochem J; 2002 Jun; 364(Pt 3):593-611. PubMed ID: 11931644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction with the NMDA receptor locks CaMKII in an active conformation.
    Bayer KU; De Koninck P; Leonard AS; Hell JW; Schulman H
    Nature; 2001 Jun; 411(6839):801-5. PubMed ID: 11459059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit exchange enhances information retention by CaMKII in dendritic spines.
    Singh D; Bhalla US
    Elife; 2018 Nov; 7():. PubMed ID: 30418153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.
    Zhao D; Watson JB; Xie CW
    J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+/Calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes.
    Guo T; Zhang T; Mestril R; Bers DM
    Circ Res; 2006 Aug; 99(4):398-406. PubMed ID: 16840718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in processing of short-term and long-term memories after passive avoidance learning.
    Zhao W; Lawen A; Ng KT
    J Neurosci Res; 1999 Mar; 55(5):557-68. PubMed ID: 10082078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity.
    Stratton M; Lee IH; Bhattacharyya M; Christensen SM; Chao LH; Schulman H; Groves JT; Kuriyan J
    Elife; 2014 Jan; 3():e01610. PubMed ID: 24473075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.