These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 1581976)

  • 1. Actin-dependent myoid elongation in teleost rod inner/outer segments occurs in the absence of net actin polymerization.
    Pagh-Roehl K; Brandenburger J; Wang E; Burnside B
    Cell Motil Cytoskeleton; 1992; 21(3):235-51. PubMed ID: 1581976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shortening of the calycal process actin cytoskeleton is correlated with myoid elongation in teleost rods.
    Pagh-Roehl K; Wang E; Burnside B
    Exp Eye Res; 1992 Nov; 55(5):735-46. PubMed ID: 1478283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-activation of teleost rod photoreceptor elongation.
    Liepe BA; Burnside B
    Exp Eye Res; 1993 Jul; 57(1):117-25. PubMed ID: 8405167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubules and actin filaments in teleost visual cone elongation and contraction.
    Burnside B
    J Supramol Struct; 1976; 5(3):257-75. PubMed ID: 1035780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calmodulin-binding proteins in teleost retina, rod inner and outer segments, and rod cytoskeletons.
    Nagle BW; Burnside B
    Eur J Cell Biol; 1984 Mar; 33(2):248-57. PubMed ID: 6325192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic nucleotide regulation of teleost rod photoreceptor inner segment length.
    Liepe BA; Burnside B
    J Gen Physiol; 1993 Jul; 102(1):75-98. PubMed ID: 7690838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors.
    Williams DS; Linberg KA; Vaughan DK; Fariss RN; Fisher SK
    J Comp Neurol; 1988 Jun; 272(2):161-76. PubMed ID: 3397406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actin-dependent cell elongation in teleost retinal rods: requirement for actin filament assembly.
    O'Connor P; Burnside B
    J Cell Biol; 1981 Jun; 89(3):517-24. PubMed ID: 6894759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actin filament polarity at the site of rod outer segment disk morphogenesis.
    Chaitin MH; Burnside B
    Invest Ophthalmol Vis Sci; 1989 Dec; 30(12):2461-9. PubMed ID: 2592159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of cyclic nucleotide-regulated phosphoproteins, including phosducin, in motile rod inner-outer segments of teleosts.
    Pagh-Roehl K; Han E; Burnside B
    Exp Eye Res; 1993 Dec; 57(6):679-91. PubMed ID: 8150021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The teleost cone cytoskeleton. Localization of actin, microtubules, and intermediate filaments.
    Nagle BW; Okamoto C; Taggart B; Burnside B
    Invest Ophthalmol Vis Sci; 1986 May; 27(5):689-701. PubMed ID: 3700018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinomotor movements in isolated teleost retinal cone inner-outer segment preparations (CIS-COS): effects of light, dark and dopamine.
    Burnside B; Wang E; Pagh-Roehl K; Rey H
    Exp Eye Res; 1993 Dec; 57(6):709-22. PubMed ID: 8150023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunolocalization of 48K in rod photoreceptors. Light and ATP increase OS labeling.
    Mangini NJ; Pepperberg DR
    Invest Ophthalmol Vis Sci; 1988 Aug; 29(8):1221-34. PubMed ID: 3138199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence light microscopy of F-actin in retinal rods and glial cells.
    Del Priore LV; Lewis A; Tan S; Carley WW; Webb WW
    Invest Ophthalmol Vis Sci; 1987 Apr; 28(4):633-9. PubMed ID: 3104228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of F-actin elongation sites in lysed polymorphonuclear leukocytes parallels the distribution of endogenous F-actin.
    Redmond T; Zigmond SH
    Cell Motil Cytoskeleton; 1993; 26(1):7-18. PubMed ID: 8221909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin 3A transgene expression produces abnormal actin filament bundles in transgenic Xenopus laevis rod photoreceptors.
    Lin-Jones J; Parker E; Wu M; Dosé A; Burnside B
    J Cell Sci; 2004 Nov; 117(Pt 24):5825-34. PubMed ID: 15522885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The actin network in the ciliary stalk of photoreceptors functions in the generation of new outer segment discs.
    Hale IL; Fisher SK; Matsumoto B
    J Comp Neurol; 1996 Dec; 376(1):128-42. PubMed ID: 8946288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distribution of actin in cultured normal and dystrophic rat pigment epithelial cells during the phagocytosis of rod outer segments.
    Chaitin MH; Hall MO
    Invest Ophthalmol Vis Sci; 1983 Jul; 24(7):821-31. PubMed ID: 6345446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of photoreceptor outer segment length and analysis of membrane assembly rates in regenerating primate photoreceptor outer segments.
    Guérin CJ; Lewis GP; Fisher SK; Anderson DH
    Invest Ophthalmol Vis Sci; 1993 Jan; 34(1):175-83. PubMed ID: 8425823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE.
    Cavallaro B; Burnside B
    Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):882-91. PubMed ID: 3131263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.