These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 15819904)

  • 41. 100 Ma sweat bee nests: Early and rapid co-diversification of crown bees and flowering plants.
    Genise JF; Bellosi ES; Sarzetti LC; Krause JM; Dinghi PA; Sánchez MV; Umazano AM; Puerta P; Cantil LF; Jicha BR
    PLoS One; 2020; 15(1):e0227789. PubMed ID: 31995815
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Absolute diversification rates in angiosperm clades.
    Magallón S; Sanderson MJ
    Evolution; 2001 Sep; 55(9):1762-80. PubMed ID: 11681732
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Key questions and challenges in angiosperm macroevolution.
    Sauquet H; Magallón S
    New Phytol; 2018 Sep; 219(4):1170-1187. PubMed ID: 29577323
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Montsechia, an ancient aquatic angiosperm.
    Gomez B; Daviero-Gomez V; Coiffard C; Martín-Closas C; Dilcher DL
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10985-8. PubMed ID: 26283347
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms.
    Crisp MD; Cook LG
    New Phytol; 2011 Dec; 192(4):997-1009. PubMed ID: 21895664
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plastid phylogenomics and biogeographic analysis support a trans-Tethyan origin and rapid early radiation of Cornales in the Mid-Cretaceous.
    Fu CN; Mo ZQ; Yang JB; Ge XJ; Li DZ; Xiang QJ; Gao LM
    Mol Phylogenet Evol; 2019 Nov; 140():106601. PubMed ID: 31445202
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms).
    Massoni J; Couvreur TL; Sauquet H
    BMC Evol Biol; 2015 Mar; 15():49. PubMed ID: 25887386
    [TBL] [Abstract][Full Text] [Related]  

  • 48. When Earth started blooming: insights from the fossil record.
    Friis EM; Pedersen KR; Crane PR
    Curr Opin Plant Biol; 2005 Feb; 8(1):5-12. PubMed ID: 15653393
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America.
    Qian H; Jin Y; Ricklefs RE
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11452-11457. PubMed ID: 29073071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales.
    Rudall PJ; Bateman RM
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1179-1194. PubMed ID: 30714286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The angiosperm radiation revisited, an ecological explanation for Darwin's 'abominable mystery'.
    Berendse F; Scheffer M
    Ecol Lett; 2009 Sep; 12(9):865-72. PubMed ID: 19572916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy.
    Schuettpelz E; Pryer KM
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):11200-5. PubMed ID: 19567832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution.
    McElwain JC; Yiotis C; Lawson T
    New Phytol; 2016 Jan; 209(1):94-103. PubMed ID: 26230251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Darwin's abominable mystery: Insights from a supertree of the angiosperms.
    Davies TJ; Barraclough TG; Chase MW; Soltis PS; Soltis DE; Savolainen V
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):1904-9. PubMed ID: 14766971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Palynofloras from the upper Barremian-Aptian Nishihiro Formation (Outer Zone of southwest Japan) and the appearance of angiosperms in Japan.
    Legrand J; Yamada T; Nishida H
    J Plant Res; 2014 Mar; 127(2):221-32. PubMed ID: 24374938
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales.
    Larson-Johnson K
    New Phytol; 2016 Jan; 209(1):418-35. PubMed ID: 26204796
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tanispermum, a new genus of hemi-orthotropous to hemi-anatropous angiosperm seeds from the Early Cretaceous of eastern North America.
    Friis EM; Crane PR; Pedersen KR
    Am J Bot; 2018 Aug; 105(8):1369-1388. PubMed ID: 30080239
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mammal disparity decreases during the Cretaceous angiosperm radiation.
    Grossnickle DM; Polly PD
    Proc Biol Sci; 2013 Nov; 280(1771):20132110. PubMed ID: 24089340
    [TBL] [Abstract][Full Text] [Related]  

  • 59. What is the age of flowering plants?
    Sauquet H; Ramírez-Barahona S; Magallón S
    J Exp Bot; 2022 Jun; 73(12):3840-3853. PubMed ID: 35438718
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Late Cretaceous domatia reveal the antiquity of plant-mite mutualisms in flowering plants.
    Maccracken SA; Miller IM; Labandeira CC
    Biol Lett; 2019 Nov; 15(11):20190657. PubMed ID: 31744409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.