These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 15819940)
1. Oxidation of fugitive methane in ground water linked to bacterial sulfate reduction. Van Stempvoort D; Maathuis H; Jaworski E; Mayer B; Rich K Ground Water; 2005; 43(2):187-99. PubMed ID: 15819940 [TBL] [Abstract][Full Text] [Related]
2. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
3. Microbial reduction of sulfate injected to gas condensate plumes in cold groundwater. Van Stempvoort DR; Armstrong J; Mayer B J Contam Hydrol; 2007 Jul; 92(3-4):184-207. PubMed ID: 17292997 [TBL] [Abstract][Full Text] [Related]
4. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface. Salminen JM; Hänninen PJ; Leveinen J; Lintinen PT; Jørgensen KS J Environ Qual; 2006; 35(6):2273-82. PubMed ID: 17071898 [TBL] [Abstract][Full Text] [Related]
5. [Anaerobic methane oxidation and sulfate reduction in bacterial mats of coral-like carbonate structures in the Black Sea]. Pimenov NV; Ivanova AE Mikrobiologiia; 2005; 74(3):420-9. PubMed ID: 16119857 [TBL] [Abstract][Full Text] [Related]
6. Microbiology to help solve our energy needs: methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle. Grigoryan A; Voordouw G Ann N Y Acad Sci; 2008 Mar; 1125():345-52. PubMed ID: 18378604 [TBL] [Abstract][Full Text] [Related]
7. Sulfur analyses as tracers of microbial degradation of hydrocarbons in the capillary fringe. Van Stempvoort DR; Kwong YT J Contam Hydrol; 2010 May; 114(1-4):1-17. PubMed ID: 20227785 [TBL] [Abstract][Full Text] [Related]
8. [Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery]. Nazina TN; Grigor'ian AA; Shestakova NM; Babich TL; Ivoĭlov VS; Feng Q; Ni F; Wang J; She Y; Xiang T; Luo Z; Beliaev SS; Ivanov MV Mikrobiologiia; 2007; 76(3):329-39. PubMed ID: 17633408 [TBL] [Abstract][Full Text] [Related]
9. [Microbiological and production characteristics of the high-temperature Kongdian bed revealed during field trial of biotechnology for the enhancement of oil recovery]. Nazina TN; Grigor'ian AA; Feng Ts; Shestakova NM; Babich TL; Pavlova NK; Ivoĭlov VS; Ni F; Wang J; She Y; Xiang T; Mei B; Luo Z; Beliaev SS; Ivanov MV Mikrobiologiia; 2007; 76(3):340-53. PubMed ID: 17633409 [TBL] [Abstract][Full Text] [Related]
10. Impact of water table depth on forest soil methane turnover in laboratory soil cores deduced from natural abundance and tracer 13C stable isotope experiments. McNamara NP; Chamberlain PM; Piearce TG; Sleep D; Black HI; Reay DS; Ineson P Isotopes Environ Health Stud; 2006 Dec; 42(4):379-90. PubMed ID: 17090489 [TBL] [Abstract][Full Text] [Related]
11. [Regulation of geochemical activity of microorganisms in a petroleum reservoir by injection of H2O2 or water-air mixture]. Nazina TN; Pavlova NK; Ni F; Shestakova NM; Ivoĭlov VS; Feng Q; Dongyun Z; Prusakova TS; Beliaev SS; Ivanov MV Mikrobiologiia; 2008; 77(3):370-9. PubMed ID: 18683655 [TBL] [Abstract][Full Text] [Related]
12. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
13. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Nauhaus K; Albrecht M; Elvert M; Boetius A; Widdel F Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423 [TBL] [Abstract][Full Text] [Related]
15. Methanotrophic production of extracellular polysaccharide in landfill cover soils. Chiemchaisri W; Wu JS; Visvanathan C Water Sci Technol; 2001; 43(6):151-8. PubMed ID: 11381961 [TBL] [Abstract][Full Text] [Related]
16. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. Wilms R; Sass H; Köpke B; Cypionka H; Engelen B FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478 [TBL] [Abstract][Full Text] [Related]
17. Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. Eckford RE; Fedorak PM J Ind Microbiol Biotechnol; 2002 Aug; 29(2):83-92. PubMed ID: 12161775 [TBL] [Abstract][Full Text] [Related]
18. Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste. Holowenko FM; MacKinnon MD; Fedorak PM Can J Microbiol; 2000 Oct; 46(10):927-37. PubMed ID: 11068680 [TBL] [Abstract][Full Text] [Related]
19. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367 [TBL] [Abstract][Full Text] [Related]
20. [Ecologic conditions for the spread of methane-forming bacteria in the petroleum strata of Apsheron]. Nazina TN; Rozanova EP Mikrobiologiia; 1980; 49(1):123-9. PubMed ID: 6446657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]