These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15820737)

  • 1. Interaction of the IP3-Ca2+ and MAPK signaling systems in the Xenopus blastomere: a possible frequency encoding mechanism for the control of the Xbra gene expression.
    Díaz J; Martínez-Mekler G
    Bull Math Biol; 2005 May; 67(3):433-65. PubMed ID: 15820737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the IP(3)-Ca(2+) and the FGF-MAPK signaling pathways in the Xenopus laevis embryo: a qualitative approach to the mesodermal induction problem.
    Díaz J; Baier G; Martínez-Mekler G; Pastor N
    Biophys Chem; 2002 May; 97(1):55-72. PubMed ID: 12052495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of a spatial distribution of IP3 receptors in the Ca2+ dynamics of the Xenopus embryo at the mid-blastula transition stage.
    Díaz J; Pastor N; Martínez-Mekler G
    Dev Dyn; 2005 Feb; 232(2):301-12. PubMed ID: 15614769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning.
    Curran KL; Grainger RM
    Dev Biol; 2000 Dec; 228(1):41-56. PubMed ID: 11087625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus.
    Fletcher RB; Harland RM
    Dev Dyn; 2008 May; 237(5):1243-54. PubMed ID: 18386826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development.
    Akagi K; Kyun Park E; Mood K; Daar IO
    Dev Dyn; 2002 Mar; 223(2):216-28. PubMed ID: 11836786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing inositol lipid hydrolysis, Ins(1,4,5)P3 receptor availability, or Ca2+ gradients lengthens the duration of the cell cycle in Xenopus laevis blastomeres.
    Han JK; Fukami K; Nuccitelli R
    J Cell Biol; 1992 Jan; 116(1):147-56. PubMed ID: 1309810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of inositol 1,4,5-trisphosphate receptor in ventral signaling in Xenopus embryos.
    Kume S; Muto A; Inoue T; Suga K; Okano H; Mikoshiba K
    Science; 1997 Dec; 278(5345):1940-3. PubMed ID: 9395395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition.
    Mak DO; McBride S; Foskett JK
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15821-5. PubMed ID: 9861054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells.
    Estrada M; Espinosa A; Müller M; Jaimovich E
    Endocrinology; 2003 Aug; 144(8):3586-97. PubMed ID: 12865341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental expression of the inositol 1,4,5-trisphosphate receptor and localization of inositol 1,4,5-trisphosphate during early embryogenesis in Xenopus laevis.
    Kume S; Muto A; Okano H; Mikoshiba K
    Mech Dev; 1997 Aug; 66(1-2):157-68. PubMed ID: 9376319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling.
    Böttcher RT; Pollet N; Delius H; Niehrs C
    Nat Cell Biol; 2004 Jan; 6(1):38-44. PubMed ID: 14688794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal ion channel clustering for intracellular calcium signaling.
    Shuai JW; Jung P
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):506-10. PubMed ID: 12518049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals.
    Dargan SL; Parker I
    J Physiol; 2003 Dec; 553(Pt 3):775-88. PubMed ID: 14555715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BMP-4 regulates the dorsal-ventral differences in FGF/MAPKK-mediated mesoderm induction in Xenopus.
    Northrop J; Woods A; Seger R; Suzuki A; Ueno N; Krebs E; Kimelman D
    Dev Biol; 1995 Nov; 172(1):242-52. PubMed ID: 7589804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis.
    Suzuki A; Yoshida H; van Heeringen SJ; Takebayashi-Suzuki K; Veenstra GJC; Taira M
    Dev Biol; 2017 Jun; 426(2):336-359. PubMed ID: 27692744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of IP3R1 and the regulation of [Ca2+]i responses at fertilization: a role for the MAP kinase pathway.
    Lee B; Vermassen E; Yoon SY; Vanderheyden V; Ito J; Alfandari D; De Smedt H; Parys JB; Fissore RA
    Development; 2006 Nov; 133(21):4355-65. PubMed ID: 17038520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of NF-kappaB associated proteins in FGF-mediated mesoderm induction.
    Beck CW; Sutherland DJ; Woodland HR
    Int J Dev Biol; 1998 Jan; 42(1):67-77. PubMed ID: 9496788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos.
    Yoon J; Kim JH; Lee SY; Kim S; Park JB; Lee JY; Kim J
    BMB Rep; 2014 Dec; 47(12):673-8. PubMed ID: 24499677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of inositol 1,4,5-trisphosphate receptor.
    Mikoshiba K; Furuichi T; Miyawaki A; Yoshikawa S; Nakade S; Michikawa T; Nakagawa T; Okano H; Kume S; Muto A
    Ann N Y Acad Sci; 1993 Dec; 707():178-97. PubMed ID: 9137552
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.