These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 15821024)
1. Circadian G2 arrest as related to circadian gating of cell population growth in Euglena. Bolige A; Hagiwara SY; Zhang Y; Goto K Plant Cell Physiol; 2005 Jun; 46(6):931-6. PubMed ID: 15821024 [TBL] [Abstract][Full Text] [Related]
2. Light regulation of the cell cycle in Euglena gracilis bacillaris. Yee MC; Bartholomew JC Cytometry; 1988 Jul; 9(4):387-93. PubMed ID: 3135985 [TBL] [Abstract][Full Text] [Related]
3. Circadian rhythms of the L-ascorbic acid level in Euglena and spinach. Kiyota M; Numayama N; Goto K J Photochem Photobiol B; 2006 Sep; 84(3):197-203. PubMed ID: 16679025 [TBL] [Abstract][Full Text] [Related]
4. S-phase and M-phase timing are under independent circadian control in the dinoflagellate Lingulodinium. Dagenais-Bellefeuille S; Bertomeu T; Morse D J Biol Rhythms; 2008 Oct; 23(5):400-8. PubMed ID: 18838606 [TBL] [Abstract][Full Text] [Related]
5. Novel findings regarding photoinduced commitments of G1-, S- and G2-phase cells to cell-cycle transitions in darkness and dark-induced G1-, S- and G2-phase arrests in Euglena. Hagiwara S; Takahashi M; Yamagishi A; Zhang Y; Goto K Photochem Photobiol; 2001 Nov; 74(5):726-33. PubMed ID: 11723802 [TBL] [Abstract][Full Text] [Related]
6. Circadian gating of photoinduction of commitment to cell-cycle transitions in relation to photoperiodic control of cell reproduction in Euglena. Hagiwara SY; Bolige A; Zhang Y; Takahashi M; Yamagishi A; Goto K Photochem Photobiol; 2002 Jul; 76(1):105-15. PubMed ID: 12126300 [TBL] [Abstract][Full Text] [Related]
7. Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. Carré IA; Edmunds LN J Cell Sci; 1993 Apr; 104 ( Pt 4)():1163-73. PubMed ID: 8391014 [TBL] [Abstract][Full Text] [Related]
8. Circadian rhythm and cell cycle: possible entraining mechanisms. Rensing L; Goedeke K Chronobiologia; 1976; 3(1):853-65. PubMed ID: 179764 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the circadian oscillator underlying cell division rhythmicity in Euglena gracilis. Edmunds LN; Laval-Martin DL; Tamponnet C; Carré IA Prog Clin Biol Res; 1990; 341B():229-42. PubMed ID: 2170990 [No Abstract] [Full Text] [Related]
10. Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling. Altinok A; Lévi F; Goldbeter A Eur J Pharm Sci; 2009 Jan; 36(1):20-38. PubMed ID: 19041394 [TBL] [Abstract][Full Text] [Related]
11. High irradiance responses involving photoreversible multiple photoreceptors as related to photoperiodic induction of cell division in Euglena. Bolige A; Goto K J Photochem Photobiol B; 2007 Feb; 86(2):109-20. PubMed ID: 17029971 [TBL] [Abstract][Full Text] [Related]
12. [Inequality of numbers of cells passing daily from S phase into G2 and from G2 into mitosis for a population of young mouse hepatocytes]. Gushchin VA Tsitologiia; 1975 Jun; 17(6):674-81. PubMed ID: 1154498 [TBL] [Abstract][Full Text] [Related]
13. Akt-induced promotion of cell-cycle progression at G2/M phase involves upregulation of NF-Y binding activity in PC12 cells. Lee SR; Park JH; Park EK; Chung CH; Kang SS; Bang OS J Cell Physiol; 2005 Nov; 205(2):270-7. PubMed ID: 15887249 [TBL] [Abstract][Full Text] [Related]
14. Flow fluorometric study of DNA content in nonproliferative Euglena gracilis cells and during proliferation. Bonaly J; Mestre JC Cytometry; 1981 Jul; 2(1):35-8. PubMed ID: 6791902 [TBL] [Abstract][Full Text] [Related]
15. Characterization of polypeptides in Euglena gracilis which are synthesized in a circadian manner. Künne A; Pistorius E; de Groot E Eur J Cell Biol; 1997 Jun; 73(2):175-81. PubMed ID: 9208231 [TBL] [Abstract][Full Text] [Related]
16. Circadian rhythms of resistance to UV-C and UV-B radiation in Euglena as related to "escape from light" and "resistance to light". Bolige A; Kiyota M; Goto K J Photochem Photobiol B; 2005 Oct; 81(1):43-54. PubMed ID: 16111890 [TBL] [Abstract][Full Text] [Related]
17. Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Choi EJ; Kim GH Phytomedicine; 2008 Sep; 15(9):683-90. PubMed ID: 18541420 [TBL] [Abstract][Full Text] [Related]
18. p130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2. Jackson MW; Agarwal MK; Yang J; Bruss P; Uchiumi T; Agarwal ML; Stark GR; Taylor WR J Cell Sci; 2005 May; 118(Pt 9):1821-32. PubMed ID: 15827088 [TBL] [Abstract][Full Text] [Related]
19. Vitamin C transiently arrests cancer cell cycle progression in S phase and G2/M boundary by modulating the kinetics of activation and the subcellular localization of Cdc25C phosphatase. Thomas CG; Vezyraki PE; Kalfakakou VP; Evangelou AM J Cell Physiol; 2005 Nov; 205(2):310-8. PubMed ID: 15887239 [TBL] [Abstract][Full Text] [Related]
20. Cell cycle oscillators. Temperature compensation of the circadian rhythm of cell division in Euglena. Anderson RW; Laval-Martin DL; Edmunds LN Exp Cell Res; 1985 Mar; 157(1):144-58. PubMed ID: 3918876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]