These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Synergistic repression of anaerobic genes by Mot3 and Rox1 in Saccharomyces cerevisiae. Sertil O; Kapoor R; Cohen BD; Abramova N; Lowry CV Nucleic Acids Res; 2003 Oct; 31(20):5831-7. PubMed ID: 14530431 [TBL] [Abstract][Full Text] [Related]
7. The anatomy of a hypoxic operator in Saccharomyces cerevisiae. Deckert J; Torres AM; Hwang SM; Kastaniotis AJ; Zitomer RS Genetics; 1998 Dec; 150(4):1429-41. PubMed ID: 9832521 [TBL] [Abstract][Full Text] [Related]
8. Approaches to the study of Rox1 repression of the hypoxic genes in the yeast Saccharomyces cerevisiae. Zitomer RS; Limbach MP; Rodriguez-Torres AM; Balasubramanian B; Deckert J; Snow PM Methods; 1997 Mar; 11(3):279-88. PubMed ID: 9073571 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of Rox1, a DNA-bending repressor of hypoxic genes in Saccharomyces cerevisiae. Deckert J; Rodriguez Torres AM; Simon JT; Zitomer RS Mol Cell Biol; 1995 Nov; 15(11):6109-17. PubMed ID: 7565763 [TBL] [Abstract][Full Text] [Related]
10. Multiple elements and auto-repression regulate Rox1, a repressor of hypoxic genes in Saccharomyces cerevisiae. Deckert J; Perini R; Balasubramanian B; Zitomer RS Genetics; 1995 Mar; 139(3):1149-58. PubMed ID: 7768429 [TBL] [Abstract][Full Text] [Related]
11. Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation. Castro-Prego R; Lamas-Maceiras M; Soengas P; Carneiro I; González-Siso I; Cerdán ME Biochem J; 2009 Dec; 425(1):235-43. PubMed ID: 19807692 [TBL] [Abstract][Full Text] [Related]
12. The Rox1 repressor of the Saccharomyces cerevisiae hypoxic genes is a specific DNA-binding protein with a high-mobility-group motif. Balasubramanian B; Lowry CV; Zitomer RS Mol Cell Biol; 1993 Oct; 13(10):6071-8. PubMed ID: 8413209 [TBL] [Abstract][Full Text] [Related]
13. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. Conlan RS; Tzamarias D J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075 [TBL] [Abstract][Full Text] [Related]
14. Activator and repressor functions of the Mot3 transcription factor in the osmostress response of Saccharomyces cerevisiae. Martínez-Montañés F; Rienzo A; Poveda-Huertes D; Pascual-Ahuir A; Proft M Eukaryot Cell; 2013 May; 12(5):636-47. PubMed ID: 23435728 [TBL] [Abstract][Full Text] [Related]
15. Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae. Hongay C; Jia N; Bard M; Winston F EMBO J; 2002 Aug; 21(15):4114-24. PubMed ID: 12145211 [TBL] [Abstract][Full Text] [Related]
16. HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae. Keng T Mol Cell Biol; 1992 Jun; 12(6):2616-23. PubMed ID: 1588959 [TBL] [Abstract][Full Text] [Related]
17. Positive and negative elements involved in the differential regulation by heme and oxygen of the HEM13 gene (coproporphyrinogen oxidase) in Saccharomyces cerevisiae. Amillet JM; Buisson N; Labbe-Bois R Curr Genet; 1995 Nov; 28(6):503-11. PubMed ID: 8593679 [TBL] [Abstract][Full Text] [Related]
18. Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors. Montañés FM; Pascual-Ahuir A; Proft M Mol Microbiol; 2011 Feb; 79(4):1008-23. PubMed ID: 21299653 [TBL] [Abstract][Full Text] [Related]
19. The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Khalaf RA; Zitomer RS Genetics; 2001 Apr; 157(4):1503-12. PubMed ID: 11290707 [TBL] [Abstract][Full Text] [Related]