BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 15821166)

  • 1. Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex.
    Bowen ME; Weninger K; Ernst J; Chu S; Brunger AT
    Biophys J; 2005 Jul; 89(1):690-702. PubMed ID: 15821166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subtle Interplay between synaptotagmin and complexin binding to the SNARE complex.
    Xu J; Brewer KD; Perez-Castillejos R; Rizo J
    J Mol Biol; 2013 Sep; 425(18):3461-75. PubMed ID: 23845424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex.
    Choi UB; Zhao M; Zhang Y; Lai Y; Brunger AT
    Elife; 2016 Jun; 5():. PubMed ID: 27253060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo.
    Littleton JT; Bai J; Vyas B; Desai R; Baltus AE; Garment MB; Carlson SD; Ganetzky B; Chapman ER
    J Neurosci; 2001 Mar; 21(5):1421-33. PubMed ID: 11222632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of complexin binding to the SNARE complex: correcting single molecule FRET measurements for hidden events.
    Li Y; Augustine GJ; Weninger K
    Biophys J; 2007 Sep; 93(6):2178-87. PubMed ID: 17513363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs.
    Tucker WC; Weber T; Chapman ER
    Science; 2004 Apr; 304(5669):435-8. PubMed ID: 15044754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the inhibitory role of tomosyn in exocytosis.
    Pobbati AV; Razeto A; Böddener M; Becker S; Fasshauer D
    J Biol Chem; 2004 Nov; 279(45):47192-200. PubMed ID: 15316007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexin Binding to Membranes and Acceptor t-SNAREs Explains Its Clamping Effect on Fusion.
    Zdanowicz R; Kreutzberger A; Liang B; Kiessling V; Tamm LK; Cafiso DS
    Biophys J; 2017 Sep; 113(6):1235-1250. PubMed ID: 28456331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism.
    Bai J; Earles CA; Lewis JL; Chapman ER
    J Biol Chem; 2000 Aug; 275(33):25427-35. PubMed ID: 10840045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction.
    Sutton RB; Ernst JA; Brunger AT
    J Cell Biol; 1999 Nov; 147(3):589-98. PubMed ID: 10545502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple factors maintain assembled trans-SNARE complexes in the presence of NSF and αSNAP.
    Prinslow EA; Stepien KP; Pan YZ; Xu J; Rizo J
    Elife; 2019 Jan; 8():. PubMed ID: 30657450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis.
    Pabst S; Margittai M; Vainius D; Langen R; Jahn R; Fasshauer D
    J Biol Chem; 2002 Mar; 277(10):7838-48. PubMed ID: 11751907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of synaptotagmin interaction with t-SNARE proteins in vitro after calcium/calmodulin-dependent phosphorylation.
    Verona M; Zanotti S; Schäfer T; Racagni G; Popoli M
    J Neurochem; 2000 Jan; 74(1):209-21. PubMed ID: 10617122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconciling isothermal titration calorimetry analyses of interactions between complexin and truncated SNARE complexes.
    Prinslow EA; Brautigam CA; Rizo J
    Elife; 2017 Sep; 6():. PubMed ID: 28880148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of neuronal SNARE assembly by the membrane.
    Kweon DH; Kim CS; Shin YK
    Nat Struct Biol; 2003 Jun; 10(6):440-7. PubMed ID: 12740606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis.
    Rao SK; Huynh C; Proux-Gillardeaux V; Galli T; Andrews NW
    J Biol Chem; 2004 May; 279(19):20471-9. PubMed ID: 14993220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A.
    Ohyama A; Hosaka K; Komiya Y; Akagawa K; Yamauchi E; Taniguchi H; Sasagawa N; Kumakura K; Mochida S; Yamauchi T; Igarashi M
    J Neurosci; 2002 May; 22(9):3342-51. PubMed ID: 11978810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-dependent dissociation of synaptotagmin from synaptic SNARE complexes.
    Leveque C; Boudier JA; Takahashi M; Seagar M
    J Neurochem; 2000 Jan; 74(1):367-74. PubMed ID: 10617141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes.
    Davis AF; Bai J; Fasshauer D; Wolowick MJ; Lewis JL; Chapman ER
    Neuron; 1999 Oct; 24(2):363-76. PubMed ID: 10571230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are neuronal SNARE proteins Ca2+ sensors?
    Chen X; Tang J; Sudhof TC; Rizo J
    J Mol Biol; 2005 Mar; 347(1):145-58. PubMed ID: 15733924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.