These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 15821729)
1. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Alper H; Miyaoku K; Stephanopoulos G Nat Biotechnol; 2005 May; 23(5):612-6. PubMed ID: 15821729 [TBL] [Abstract][Full Text] [Related]
2. Uncovering the gene knockout landscape for improved lycopene production in E. coli. Alper H; Stephanopoulos G Appl Microbiol Biotechnol; 2008 Apr; 78(5):801-10. PubMed ID: 18239914 [TBL] [Abstract][Full Text] [Related]
3. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Alper H; Jin YS; Moxley JF; Stephanopoulos G Metab Eng; 2005 May; 7(3):155-64. PubMed ID: 15885614 [TBL] [Abstract][Full Text] [Related]
4. Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Vadali RV; Fu Y; Bennett GN; San KY Biotechnol Prog; 2005; 21(5):1558-61. PubMed ID: 16209562 [TBL] [Abstract][Full Text] [Related]
5. Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Alper H; Miyaoku K; Stephanopoulos G Appl Microbiol Biotechnol; 2006 Oct; 72(5):968-74. PubMed ID: 16502313 [TBL] [Abstract][Full Text] [Related]
6. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Burgard AP; Pharkya P; Maranas CD Biotechnol Bioeng; 2003 Dec; 84(6):647-57. PubMed ID: 14595777 [TBL] [Abstract][Full Text] [Related]
7. Production of H2 from sucrose by Escherichia coli strains carrying the pUR400 plasmid, which encodes invertase activity. Penfold DW; Macaskie LE Biotechnol Lett; 2004 Dec; 26(24):1879-83. PubMed ID: 15672232 [TBL] [Abstract][Full Text] [Related]
8. Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression. Van Dien SJ; Iwatani S; Usuda Y; Matsui K J Biosci Bioeng; 2006 Jul; 102(1):34-40. PubMed ID: 16952834 [TBL] [Abstract][Full Text] [Related]
9. Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Yoon SH; Lee YM; Kim JE; Lee SH; Lee JH; Kim JY; Jung KH; Shin YC; Keasling JD; Kim SW Biotechnol Bioeng; 2006 Aug; 94(6):1025-32. PubMed ID: 16547999 [TBL] [Abstract][Full Text] [Related]
10. Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions. Lara AR; Vazquez-Limón C; Gosset G; Bolívar F; López-Munguía A; Ramírez OT Biotechnol Bioeng; 2006 Aug; 94(6):1164-75. PubMed ID: 16718678 [TBL] [Abstract][Full Text] [Related]
11. Engineering HlyA hypersecretion in Escherichia coli based on proteomic and microarray analyses. Lee PS; Lee KH Biotechnol Bioeng; 2005 Jan; 89(2):195-205. PubMed ID: 15580578 [TBL] [Abstract][Full Text] [Related]
12. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. de Marco A; Deuerling E; Mogk A; Tomoyasu T; Bukau B BMC Biotechnol; 2007 Jun; 7():32. PubMed ID: 17565681 [TBL] [Abstract][Full Text] [Related]
13. Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. Rodríguez-Villalón A; Pérez-Gil J; Rodríguez-Concepción M J Biotechnol; 2008 May; 135(1):78-84. PubMed ID: 18417238 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Park JH; Lee KH; Kim TY; Lee SY Proc Natl Acad Sci U S A; 2007 May; 104(19):7797-802. PubMed ID: 17463081 [TBL] [Abstract][Full Text] [Related]
15. Modelling of translation of human protein disulfide isomerase in Escherichia coli-A case study of gene optimisation. Niemitalo O; Neubauer A; Liebal U; Myllyharju J; Juffer AH; Neubauer P J Biotechnol; 2005 Oct; 120(1):11-24. PubMed ID: 16111781 [TBL] [Abstract][Full Text] [Related]
16. In situ recovery of lycopene during biosynthesis with recombinant Escherichia coli. Yoon KW; Doo EH; Kim SW; Park JB J Biotechnol; 2008 Jun; 135(3):291-4. PubMed ID: 18513818 [TBL] [Abstract][Full Text] [Related]
18. Combinatorial biosynthesis of carotenoids in a heterologous host: a powerful approach for the biosynthesis of novel structures. Sandmann G Chembiochem; 2002 Jul; 3(7):629-35. PubMed ID: 12324996 [TBL] [Abstract][Full Text] [Related]
19. Improving lycopene production in Escherichia coli by engineering metabolic control. Farmer WR; Liao JC Nat Biotechnol; 2000 May; 18(5):533-7. PubMed ID: 10802621 [TBL] [Abstract][Full Text] [Related]
20. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Zhou Y; Nambou K; Wei L; Cao J; Imanaka T; Hua Q Biotechnol Lett; 2013 Dec; 35(12):2137-45. PubMed ID: 24062132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]