These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 15822011)
1. Thermal dissipation of light energy is regulated differently and by different mechanisms in lichens and higher plants. Kopecky J; Azarkovich M; Pfündel EE; Shuvalov VA; Heber U Plant Biol (Stuttg); 2005 Mar; 7(2):156-67. PubMed ID: 15822011 [TBL] [Abstract][Full Text] [Related]
2. Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs. Heber U; Azarkovich M; Shuvalov V J Exp Bot; 2007; 58(11):2745-59. PubMed ID: 17609533 [TBL] [Abstract][Full Text] [Related]
3. Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs. Heber U; Lange OL; Shuvalov VA J Exp Bot; 2006; 57(6):1211-23. PubMed ID: 16551690 [TBL] [Abstract][Full Text] [Related]
4. Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation. Heber U; Bilger W; Shuvalov VA J Exp Bot; 2006; 57(12):2993-3006. PubMed ID: 16893979 [TBL] [Abstract][Full Text] [Related]
5. Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions. Heber U; Bilger W; Bligny R; Lange OL Planta; 2000 Nov; 211(6):770-80. PubMed ID: 11144261 [TBL] [Abstract][Full Text] [Related]
6. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. Heber U; Soni V; Strasser RJ Physiol Plant; 2011 May; 142(1):65-78. PubMed ID: 21029105 [TBL] [Abstract][Full Text] [Related]
7. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss. Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947 [TBL] [Abstract][Full Text] [Related]
8. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Ruban AV; Young AJ; Horton P Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246 [TBL] [Abstract][Full Text] [Related]
9. Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: desiccation-induced acceleration of photosystem II fluorescence decay. Yamakawa H; Itoh S Biochemistry; 2013 Jul; 52(26):4451-9. PubMed ID: 23750703 [TBL] [Abstract][Full Text] [Related]
10. Photochemical reactions of chlorophyll in dehydrated photosystem II: two chlorophyll forms (680 and 700 nm). Heber U; Shuvalov VA Photosynth Res; 2005 Jun; 84(1-3):85-91. PubMed ID: 16049759 [TBL] [Abstract][Full Text] [Related]
11. Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens. Heber U; Bukhov NG; Shuvalov VA; Kobayashi Y; Lange OL J Exp Bot; 2001 Oct; 52(363):1999-2006. PubMed ID: 11559735 [TBL] [Abstract][Full Text] [Related]
12. Responses to desiccation stress in lichens are different from those in their photobionts. Kosugi M; Arita M; Shizuma R; Moriyama Y; Kashino Y; Koike H; Satoh K Plant Cell Physiol; 2009 Apr; 50(4):879-88. PubMed ID: 19304738 [TBL] [Abstract][Full Text] [Related]
13. Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of photosystem II of plants. Ruban AV; Phillip D; Young AJ; Horton P Biochemistry; 1997 Jun; 36(25):7855-9. PubMed ID: 9201929 [TBL] [Abstract][Full Text] [Related]
14. Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center? Bukhov NG; Heber U; Wiese C; Shuvalov VA Planta; 2001 Apr; 212(5-6):749-58. PubMed ID: 11346948 [TBL] [Abstract][Full Text] [Related]
15. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances. Stroch M; Cajánek M; Kalina J; Spunda V J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349 [TBL] [Abstract][Full Text] [Related]
16. Responses to desiccation stress in bryophytes and an important role of dithiothreitol-insensitive non-photochemical quenching against photoinhibition in dehydrated states. Nabe H; Funabiki R; Kashino Y; Koike H; Satoh K Plant Cell Physiol; 2007 Nov; 48(11):1548-57. PubMed ID: 17908696 [TBL] [Abstract][Full Text] [Related]
17. Measurement of photochemical quenching of absorbed quanta in photosystem I of intact leaves using simultaneous measurements of absorbance changes at 830 nm and thermal dissipation. Bukhov NG; Carpentier R Planta; 2003 Feb; 216(4):630-8. PubMed ID: 12569405 [TBL] [Abstract][Full Text] [Related]
18. Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria. Heber U; Bilger W; Türk R; Lange OL New Phytol; 2010 Jan; 185(2):459-70. PubMed ID: 19863730 [TBL] [Abstract][Full Text] [Related]
19. The carotenoid zeaxanthin and 'high-energy-state quenching' of chlorophyll fluorescence. Demmig-Adams B; Adams WW Photosynth Res; 1990 Sep; 25(3):187-97. PubMed ID: 24420349 [TBL] [Abstract][Full Text] [Related]
20. Non-photochemical loss in PSII in high- and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including L(NP), F0/F'm, a novel parameter. Stefanov D; Terashima I Physiol Plant; 2008 Jun; 133(2):327-38. PubMed ID: 18346081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]