BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 15822011)

  • 1. Thermal dissipation of light energy is regulated differently and by different mechanisms in lichens and higher plants.
    Kopecky J; Azarkovich M; Pfündel EE; Shuvalov VA; Heber U
    Plant Biol (Stuttg); 2005 Mar; 7(2):156-67. PubMed ID: 15822011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs.
    Heber U; Azarkovich M; Shuvalov V
    J Exp Bot; 2007; 58(11):2745-59. PubMed ID: 17609533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs.
    Heber U; Lange OL; Shuvalov VA
    J Exp Bot; 2006; 57(6):1211-23. PubMed ID: 16551690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation.
    Heber U; Bilger W; Shuvalov VA
    J Exp Bot; 2006; 57(12):2993-3006. PubMed ID: 16893979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions.
    Heber U; Bilger W; Bligny R; Lange OL
    Planta; 2000 Nov; 211(6):770-80. PubMed ID: 11144261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens.
    Heber U; Soni V; Strasser RJ
    Physiol Plant; 2011 May; 142(1):65-78. PubMed ID: 21029105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss.
    Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U
    Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants.
    Ruban AV; Young AJ; Horton P
    Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: desiccation-induced acceleration of photosystem II fluorescence decay.
    Yamakawa H; Itoh S
    Biochemistry; 2013 Jul; 52(26):4451-9. PubMed ID: 23750703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical reactions of chlorophyll in dehydrated photosystem II: two chlorophyll forms (680 and 700 nm).
    Heber U; Shuvalov VA
    Photosynth Res; 2005 Jun; 84(1-3):85-91. PubMed ID: 16049759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens.
    Heber U; Bukhov NG; Shuvalov VA; Kobayashi Y; Lange OL
    J Exp Bot; 2001 Oct; 52(363):1999-2006. PubMed ID: 11559735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses to desiccation stress in lichens are different from those in their photobionts.
    Kosugi M; Arita M; Shizuma R; Moriyama Y; Kashino Y; Koike H; Satoh K
    Plant Cell Physiol; 2009 Apr; 50(4):879-88. PubMed ID: 19304738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of photosystem II of plants.
    Ruban AV; Phillip D; Young AJ; Horton P
    Biochemistry; 1997 Jun; 36(25):7855-9. PubMed ID: 9201929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?
    Bukhov NG; Heber U; Wiese C; Shuvalov VA
    Planta; 2001 Apr; 212(5-6):749-58. PubMed ID: 11346948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M; Cajánek M; Kalina J; Spunda V
    J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses to desiccation stress in bryophytes and an important role of dithiothreitol-insensitive non-photochemical quenching against photoinhibition in dehydrated states.
    Nabe H; Funabiki R; Kashino Y; Koike H; Satoh K
    Plant Cell Physiol; 2007 Nov; 48(11):1548-57. PubMed ID: 17908696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of photochemical quenching of absorbed quanta in photosystem I of intact leaves using simultaneous measurements of absorbance changes at 830 nm and thermal dissipation.
    Bukhov NG; Carpentier R
    Planta; 2003 Feb; 216(4):630-8. PubMed ID: 12569405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria.
    Heber U; Bilger W; Türk R; Lange OL
    New Phytol; 2010 Jan; 185(2):459-70. PubMed ID: 19863730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The carotenoid zeaxanthin and 'high-energy-state quenching' of chlorophyll fluorescence.
    Demmig-Adams B; Adams WW
    Photosynth Res; 1990 Sep; 25(3):187-97. PubMed ID: 24420349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-photochemical loss in PSII in high- and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including L(NP), F0/F'm, a novel parameter.
    Stefanov D; Terashima I
    Physiol Plant; 2008 Jun; 133(2):327-38. PubMed ID: 18346081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.