These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features. Pugalenthi G; Kumar KK; Suganthan PN; Gangal R Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645 [TBL] [Abstract][Full Text] [Related]
24. Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures? Garbuzynskiy SO; Melnik BS; Lobanov MY; Finkelstein AV; Galzitskaya OV Proteins; 2005 Jul; 60(1):139-47. PubMed ID: 15856480 [TBL] [Abstract][Full Text] [Related]
25. Modeling errors in NOE data with a log-normal distribution improves the quality of NMR structures. Rieping W; Habeck M; Nilges M J Am Chem Soc; 2005 Nov; 127(46):16026-7. PubMed ID: 16287280 [TBL] [Abstract][Full Text] [Related]
26. Hadamard amino-acid-type edited NMR experiment for fast protein resonance assignment. Lescop E; Rasia R; Brutscher B J Am Chem Soc; 2008 Apr; 130(15):5014-5. PubMed ID: 18345629 [TBL] [Abstract][Full Text] [Related]
28. Ranking of high-affinity ligands by NMR spectroscopy. Zhang X; Sänger A; Hemmig R; Jahnke W Angew Chem Int Ed Engl; 2009; 48(36):6691-4. PubMed ID: 19650100 [No Abstract] [Full Text] [Related]
29. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings. Atreya HS; Garcia E; Shen Y; Szyperski T J Am Chem Soc; 2007 Jan; 129(3):680-92. PubMed ID: 17227032 [TBL] [Abstract][Full Text] [Related]
30. Arbitrary precision composite pulses for NMR quantum computing. Alway WG; Jones JA J Magn Reson; 2007 Nov; 189(1):114-20. PubMed ID: 17890115 [TBL] [Abstract][Full Text] [Related]
31. Microcoil NMR spectroscopy: a novel tool for biological high throughput NMR spectroscopy. Hopson RE; Peti W Methods Mol Biol; 2008; 426():447-58. PubMed ID: 18542883 [TBL] [Abstract][Full Text] [Related]
32. NMR: prediction of protein flexibility. Berjanskii M; Wishart DS Nat Protoc; 2006; 1(2):683-8. PubMed ID: 17406296 [TBL] [Abstract][Full Text] [Related]
33. Validating the use of database potentials in protein structure determination by NMR. Mertens HD; Gooley PR FEBS Lett; 2005 Oct; 579(25):5542-8. PubMed ID: 16219311 [TBL] [Abstract][Full Text] [Related]
34. Deposition of structural data redux. Wlodawer A Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):421-3. PubMed ID: 17327681 [No Abstract] [Full Text] [Related]
35. On the precision of calculated solvent-accessible surface areas. Novotny M; Seibert M; Kleywegt GJ Acta Crystallogr D Biol Crystallogr; 2007 Feb; 63(Pt 2):270-4. PubMed ID: 17242521 [TBL] [Abstract][Full Text] [Related]
36. Toward the characterization of peptidoglycan structure and protein-peptidoglycan interactions by solid-state NMR spectroscopy. Kern T; Hediger S; Müller P; Giustini C; Joris B; Bougault C; Vollmer W; Simorre JP J Am Chem Soc; 2008 Apr; 130(17):5618-9. PubMed ID: 18393418 [TBL] [Abstract][Full Text] [Related]
37. NMR spectroscopy: pushing the limits of sensitivity. Spiess HW Angew Chem Int Ed Engl; 2008; 47(4):639-42. PubMed ID: 18046688 [No Abstract] [Full Text] [Related]
38. Quantitative study of the effects of chemical shift tolerances and rates of SA cooling on structure calculation from automatically assigned NOE data. Fossi M; Oschkinat H; Nilges M; Ball LJ J Magn Reson; 2005 Jul; 175(1):92-102. PubMed ID: 15949752 [TBL] [Abstract][Full Text] [Related]