These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15822139)

  • 1. Simultaneous removal of nitrate and heavy metals by iron metal.
    Hao ZW; Xu XH; Jin J; He P; Liu Y; Wang DH
    J Zhejiang Univ Sci B; 2005 May; 6(5):307-10. PubMed ID: 15822139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Synchronous treatment of heavy metal ions and nitrate by zero-valent iron].
    Zhang Z; Hao ZW; Liu WL; Xu XH
    Huan Jing Ke Xue; 2009 Mar; 30(3):775-9. PubMed ID: 19432327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a bio-electrochemical reactor process to direct treatment of metal pickling wastewater containing heavy metals and high strength nitrate.
    Watanabe T; Jin HW; Cho KJ; Kuroda M
    Water Sci Technol; 2004; 50(8):111-8. PubMed ID: 15566194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Photocatalytic reduction of nitrate using metal-doped titania].
    Tang LN; Liu LF; Dong XY; Yang FL
    Huan Jing Ke Xue; 2008 Sep; 29(9):2536-41. PubMed ID: 19068639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of zinc, nickel, copper and cadmium during the electrokinetic remediation of sediment from the Great Backa Canal (Serbia).
    Rajic LM; Dalmacija BD; Trickovic JS; Dalmacija MB; Krcmar DM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Jan; 45(9):1134-43. PubMed ID: 20574868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.
    Su Y; Adeleye AS; Huang Y; Sun X; Dai C; Zhou X; Zhang Y; Keller AA
    Water Res; 2014 Oct; 63():102-11. PubMed ID: 24999115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B; Gourich B; Sekki A; Madani K; Chibane M
    J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of nitrate by zero-valent iron and pillared bentonite.
    Li J; Li Y; Meng Q
    J Hazard Mater; 2010 Feb; 174(1-3):188-93. PubMed ID: 19883977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal removal from wastewater using zero-valent iron nanoparticles.
    Chen SY; Chen WH; Shih CJ
    Water Sci Technol; 2008; 58(10):1947-54. PubMed ID: 19039174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of products of tricalcium silicate hydration in the presence of heavy metals.
    Chen QY; Hills CD; Tyrer M; Slipper I; Shen HG; Brough A
    J Hazard Mater; 2007 Aug; 147(3):817-25. PubMed ID: 17416462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers.
    Satyawali Y; Seuntjens P; Van Roy S; Joris I; Vangeel S; Dejonghe W; Vanbroekhoven K
    J Contam Hydrol; 2011 Apr; 123(3-4):83-93. PubMed ID: 21237527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional metal-binding proteins by metal-stimulated bacteria for the development of an innovative metal removal technology.
    Antsuki T; Sano D; Omura T
    Water Sci Technol; 2003; 47(10):109-15. PubMed ID: 12862224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.
    Huang P; Ye Z; Xie W; Chen Q; Li J; Xu Z; Yao M
    Water Res; 2013 Aug; 47(12):4050-8. PubMed ID: 23566331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H2-reducing pretreatment and copper deposition.
    Liou YH; Lo SL; Lin CI; Hu CY; Kuan WH; Weng SC
    Environ Sci Technol; 2005 Dec; 39(24):9643-8. PubMed ID: 16475346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of mixed chlorinated ethenes and heavy metals in zero valent iron systems.
    Dries J; Bastiaens L; Springael D; Agathos SN; Diels L
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):179-83. PubMed ID: 15954286
    [No Abstract]   [Full Text] [Related]  

  • 17. Modified composites based on mesostructured iron oxyhydroxide and synthetic minerals: a potential material for the treatment of various toxic heavy metals and its toxicity.
    Chung SG; Ryu JC; Song MK; An B; Kim SB; Lee SH; Choi JW
    J Hazard Mater; 2014 Feb; 267():161-8. PubMed ID: 24444456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of promoter and noble metals and suspension pH on catalytic nitrate reduction by bimetallic nanoscale Fe(0) catalysts.
    Bae S; Hamid S; Jung J; Sihn Y; Lee W
    Environ Technol; 2016; 37(9):1077-87. PubMed ID: 26512419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor.
    Ahmed Basha C; Bhadrinarayana NS; Anantharaman N; Meera Sheriffa Begum KM
    J Hazard Mater; 2008 Mar; 152(1):71-8. PubMed ID: 17659835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metals (copper and iron) and nutrients (nitrate and phosphate) removal from aqueous medium by microalgae Chlorella vulgaris and Scendesmus obliquus, and their biofilms.
    Yousefi Y; Hanachi P; Samadi M; Khoshnamvand M
    Mar Environ Res; 2023 Jun; 188():105989. PubMed ID: 37127005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.