These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 1582258)
1. Intragenomic movement and concerted evolution of satellite DNA in Peromyscus: evidence from in situ hybridization. Hamilton MJ; Hong G; Wichman HA Cytogenet Cell Genet; 1992; 60(1):40-4. PubMed ID: 1582258 [TBL] [Abstract][Full Text] [Related]
2. Intragenomic movement, sequence amplification and concerted evolution in satellite DNA in harvest mice, Reithrodontomys: evidence from in situ hybridization. Hamilton MJ; Honeycutt RL; Baker RJ Chromosoma; 1990 Sep; 99(5):321-9. PubMed ID: 2265569 [TBL] [Abstract][Full Text] [Related]
3. Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning. Louzada S; Paço A; Kubickova S; Adega F; Guedes-Pinto H; Rubes J; Chaves R Micron; 2008 Dec; 39(8):1149-55. PubMed ID: 18602266 [TBL] [Abstract][Full Text] [Related]
4. A novel satellite DNA sequence in the Peromyscus genome (PMSat): Evolution via copy number fluctuation. Louzada S; Vieira-da-Silva A; Mendes-da-Silva A; Kubickova S; Rubes J; Adega F; Chaves R Mol Phylogenet Evol; 2015 Nov; 92():193-203. PubMed ID: 26103000 [TBL] [Abstract][Full Text] [Related]
5. A centromere satellite concomitant with extensive karyotypic diversity across the Peromyscus genus defies predictions of molecular drive. Smalec BM; Heider TN; Flynn BL; O'Neill RJ Chromosome Res; 2019 Sep; 27(3):237-252. PubMed ID: 30771198 [TBL] [Abstract][Full Text] [Related]
6. Genome organization of repetitive elements in the rodent, Peromyscus leucopus. Janecek LL; Longmire JL; Wichman HA; Baker RJ Mamm Genome; 1993; 4(7):374-81. PubMed ID: 8395263 [TBL] [Abstract][Full Text] [Related]
7. Mus and Peromyscus chromosome homology established by FISH with three mouse paint probes. Dawson WD; Young SR; Wang Z; Liu LW; Greenbaum IF; Davis LM; Hall BK Mamm Genome; 1999 Jul; 10(7):730-3. PubMed ID: 10384049 [TBL] [Abstract][Full Text] [Related]
8. Identification of highly conserved loci by genome painting. Houseal TW; Cook JA; Modi WS; Hale DW Chromosome Res; 1995 May; 3(3):175-81. PubMed ID: 7780661 [TBL] [Abstract][Full Text] [Related]
9. Concerted evolution of alpha satellite DNA: evidence for species specificity and a general lack of sequence conservation among alphoid sequences of higher primates. Waye JS; Willard HF Chromosoma; 1989 Oct; 98(4):273-9. PubMed ID: 2515043 [TBL] [Abstract][Full Text] [Related]
10. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes). Yamada K; Nishida-Umehara C; Matsuda Y Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323 [TBL] [Abstract][Full Text] [Related]
11. Genome analysis of Peromyscus (Rodentia, Cricetidae) VII. Localization of satellite DNA sequences and cytoplasmic poly(A) RNA sequences of P. eremicus on metaphase chromosomes. Hazen MW; Kuo MT; Arrighi FE Chromosoma; 1977 Nov; 64(2):133-42. PubMed ID: 562738 [TBL] [Abstract][Full Text] [Related]
13. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite. Durfy SJ; Willard HF J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932 [TBL] [Abstract][Full Text] [Related]
14. Comparative analyses of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays. Modi WS Cytogenet Cell Genet; 1993; 62(2-3):142-8. PubMed ID: 8428514 [TBL] [Abstract][Full Text] [Related]
15. Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives. Vicari MR; Nogaroto V; Noleto RB; Cestari MM; Cioffi MB; Almeida MC; Moreira-Filho O; Bertollo LA; Artoni RF J Fish Biol; 2010 Apr; 76(5):1094-116. PubMed ID: 20409164 [TBL] [Abstract][Full Text] [Related]
16. The impact of StuI digestion in situ on FISH to human chromosomes with satellite DNA probes. Nieddu M; Pichiri G; Melis V; Mezzanotte R Heredity (Edinb); 2003 Apr; 90(4):298-301. PubMed ID: 12692582 [TBL] [Abstract][Full Text] [Related]
17. Chromosomal location and distribution of As51 satellite DNA in five species of the genus Astyanax (Teleostei, Characidae, Incertae sedis). Kantek DL; Vicari MR; Peres WA; Cestari MM; Artoni RF; Bertollo LA; Moreira-Filho O J Fish Biol; 2009 Aug; 75(2):408-21. PubMed ID: 20738546 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary dynamics of two satellite DNA families in rock lizards of the genus Iberolacerta (Squamata, Lacertidae): different histories but common traits. Rojo V; Martínez-Lage A; Giovannotti M; González-Tizón AM; Nisi Cerioni P; Caputo Barucchi V; Galán P; Olmo E; Naveira H Chromosome Res; 2015 Sep; 23(3):441-61. PubMed ID: 26384818 [TBL] [Abstract][Full Text] [Related]
19. A degenerate alpha satellite probe, detecting a centromeric deletion on chromosome 21 in an apparently normal human male, shows limitations of the use of satellite DNA probes for interphase ploidy analysis. Weier HU; Gray JW Anal Cell Pathol; 1992 Mar; 4(2):81-6. PubMed ID: 1550797 [TBL] [Abstract][Full Text] [Related]
20. The species and chromosomal distribution of the centromeric alpha-satellite I sequence from sheep in the tribe Caprini and other Bovidae. Chaves R; Guedes-Pinto H; Heslop-Harrison J; Schwarzacher T Cytogenet Cell Genet; 2000; 91(1-4):62-6. PubMed ID: 11173832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]