These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1582265)

  • 1. Characterization of 10 marker chromosomes in a prostatic cancer cell line by in situ hybridization.
    Brothman AR; Patel AM
    Cytogenet Cell Genet; 1992; 60(1):8-11. PubMed ID: 1582265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of marker chromosomes in Namalva cells by chromosomal in situ suppression (CISS) hybridization and R-banding.
    Ruppersberger P; Arnold M; Zankl H; Scherthan H
    Genes Chromosomes Cancer; 1991 Sep; 3(5):394-9. PubMed ID: 1797087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved interpretation of complex chromosomal rearrangements by combined GTG banding and in situ suppression hybridization using chromosome-specific libraries and cosmid probes.
    Smit VT; Wessels JW; Mollevanger P; Dauwerse JG; van Vliet M; Beverstock GC; Breuning MH; Devilee P; Raap AK; Cornelisse CJ
    Genes Chromosomes Cancer; 1991 Jul; 3(4):239-48. PubMed ID: 1958589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mitotically stable marker chromosome negative for whole chromosome libraries, centromere probes and chromosome specific telomere regions: a novel class of supernumerary marker chromosome?
    Mackie Ogilvie C; Harrison RH; Horsley SW; Hodgson SV; Kearney L
    Cytogenet Cell Genet; 2001; 92(1-2):69-73. PubMed ID: 11306799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prenatal molecular cytogenetic diagnosis of partial tetrasomy 10p due to neocentromere formation in an inversion duplication analphoid marker chromosome.
    Levy B; Papenhausen P; Tepperberg J; Dunn T; Fallet S; Magid M; Kardon N; Hirschhorn K; Warburton P
    Cytogenet Cell Genet; 2000; 91(1-4):165-70. PubMed ID: 11173851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries.
    Liehr T; Weise A; Heller A; Starke H; Mrasek K; Kuechler A; Weier HU; Claussen U
    Cytogenet Genome Res; 2002; 97(1-2):43-50. PubMed ID: 12438737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of chromosomal anomalies and c-myc gene amplification in the cribriform pattern of prostatic intraepithelial neoplasia and carcinoma by fluorescence in situ hybridization.
    Qian J; Jenkins RB; Bostwick DG
    Mod Pathol; 1997 Nov; 10(11):1113-9. PubMed ID: 9388062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new application of in situ hybridization: detection of numerical and structural chromosome aberrations with a combination centromeric-telomeric DNA probe.
    van Dekken H; Bauman JG
    Cytogenet Cell Genet; 1988; 48(3):188-9. PubMed ID: 3234043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line sorting of human chromosomes by centromeric index, and identification of sorted populations by GTG-banding and fluorescent in situ hybridization.
    Boschman GA; Rens W; Manders E; van Oven C; Barendsen GW; Aten JA
    Hum Genet; 1990 Jun; 85(1):41-8. PubMed ID: 2358302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of marker chromosomes by in situ hybridization technique using alpha and "classical" satellite DNA probes with relative chromosomal specificity.
    Vorsanova SG; Yurov YB; Passarge I; Schmidt A; Zerova TE; Demidova IA; Buzhiyevskaya TI
    Tsitol Genet; 1994; 28(3):67-70. PubMed ID: 7974787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centromeric chromosomal translocations show tissue-specific differences between squamous cell carcinomas and adenocarcinomas.
    Hermsen M; Snijders A; Guervós MA; Taenzer S; Koerner U; Baak J; Pinkel D; Albertson D; van Diest P; Meijer G; Schrock E
    Oncogene; 2005 Feb; 24(9):1571-9. PubMed ID: 15674345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid identification of marker chromosomes by in situ hybridization under different stringency conditions.
    Vorsanova SG; Yurov YB; Soloviev IV; Demidova IA; Malet P
    Anal Cell Pathol; 1994 Oct; 7(3):251-8. PubMed ID: 7848878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical abnormalities of chromosome 7 in human prostate cancer detected by fluorescence in situ hybridization (FISH) on paraffin-embedded tissue sections with centromere-specific DNA probes.
    Zitzelsberger H; Szücs S; Weier HU; Lehmann L; Braselmann H; Enders S; Schilling A; Breul J; Höfler H; Bauchinger M
    J Pathol; 1994 Apr; 172(4):325-35. PubMed ID: 8207613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined GTG-banding and nonradioactive in situ hybridization improves characterization of complex karyotypes.
    Smit VT; Wessels JW; Mollevanger P; Schrier PI; Raap AK; Beverstock GC; Cornelisse CJ
    Cytogenet Cell Genet; 1990; 54(1-2):20-3. PubMed ID: 2249470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA in situ hybridization (interphase cytogenetics) versus comparative genomic hybridization (CGH) in human cancer: detection of numerical and structural chromosome aberrations.
    Van Dekken H; Krijtenburg PJ; Alers JC
    Acta Histochem; 2000 Feb; 102(1):85-94. PubMed ID: 10726167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Painting of defined chromosomal regions by in situ suppression hybridization of libraries from laser-microdissected chromosomes.
    Lengauer C; Eckelt A; Weith A; Endlich N; Ponelies N; Lichter P; Greulich KO; Cremer T
    Cytogenet Cell Genet; 1991; 56(1):27-30. PubMed ID: 2004552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization.
    Jenkins RB; Qian J; Lieber MM; Bostwick DG
    Cancer Res; 1997 Feb; 57(3):524-31. PubMed ID: 9012485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytogenetic analysis of human solid tumors by in situ hybridization with a set of 12 chromosome-specific DNA probes.
    van Dekken H; Pizzolo JG; Reuter VE; Melamed MR
    Cytogenet Cell Genet; 1990; 54(3-4):103-7. PubMed ID: 2265552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cytogenetic characterization of eight small supernumerary marker chromosomes originating from chromosomes 2, 4, 8, 18, and 21 in three patients.
    Pietrzak J; Mrasek K; Obersztyn E; Stankiewicz P; Kosyakova N; Weise A; Cheung SW; Cai WW; von Eggeling F; Mazurczak T; Bocian E; Liehr T
    J Appl Genet; 2007; 48(2):167-75. PubMed ID: 17495351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interphase cytogenetics of prostatic tumor progression: specific chromosomal abnormalities are involved in metastasis to the bone.
    Alers JC; Krijtenburg PJ; Rosenberg C; Hop WC; Verkerk AM; Schröder FH; van der Kwast TH; Bosman FT; van Dekken H
    Lab Invest; 1997 Nov; 77(5):437-48. PubMed ID: 9389787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.