BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1582265)

  • 21. Spectral karyotyping analysis of head and neck squamous cell carcinoma.
    Singh B; Gogineni S; Goberdhan A; Sacks P; Shaha A; Shah J; Rao P
    Laryngoscope; 2001 Sep; 111(9):1545-50. PubMed ID: 11568603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence in situ hybridization (FISH) of a whole-arm translocation involving chromosomes 18 and 20 with alpha-satellite DNA probes: detection of a centromeric DNA break?
    Cantú ES; Khan TA; Pai GS
    Am J Med Genet; 1992 Oct; 44(3):340-4. PubMed ID: 1488982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-way and two-way rearrangements involving chromosomes 10, 2, 5 and 5, 2 in two marker chromosomes of a human melanoma cell line.
    Doneda L; Wiegant J; Larizza L
    Melanoma Res; 1994 Aug; 4(4):259-65. PubMed ID: 7950361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of chromosomes and chromosomal fragments in human lymphocyte micronuclei by telomeric and centromeric FISH.
    Lindberg HK; Falck GC; Järventaus H; Norppa H
    Mutagenesis; 2008 Sep; 23(5):371-6. PubMed ID: 18502768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the origin of centromeres in whole-arm translocations using fluorescent in situ hybridization with alpha-satellite DNA probes.
    Tharapel AT; Qumsiyeh MB; Martens PR; Tharapel SA; Dalton JD; Ward JC; Wilroy RS
    Am J Med Genet; 1991 Jul; 40(1):117-20. PubMed ID: 1887840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Selective chromosome painting using in situ hybridization].
    Pérez Losada A; Woessner S; Solé F; Caballín MR; Florensa L
    Sangre (Barc); 1993 Apr; 38(2):151-4. PubMed ID: 8516730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localization of centromeric breaks in head and neck squamous cell carcinoma.
    Martínez JG; Pérez-Escuredo J; Llorente JL; Suárez C; Hermsen MA
    Cancer Genet; 2012 Dec; 205(12):622-9. PubMed ID: 23164608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping of human chromosome 22 by in situ hybridization.
    Zhang FR; Aurias A; Delattre O; Stern MH; Benitez J; Rouleau G; Thomas G
    Genomics; 1990 Jul; 7(3):319-24. PubMed ID: 2365353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homologous centromere association of chromosomes 9 and 17 in prostate cancer.
    Williams BJ; Jones E; Brothman AR
    Cancer Genet Cytogenet; 1995 Dec; 85(2):143-51. PubMed ID: 8548739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining the origins and the structural aberrations of small marker chromosomes in two cases of 45,X/46,X, + mar by use of chromosome-specific DNA probes.
    Lin CC; Meyne J; Sasi R; Bowen P; Unger T; Tainaka T; Hadro TA; Hoo JJ
    Am J Med Genet; 1990 Sep; 37(1):71-8. PubMed ID: 2240047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homologies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries.
    Wienberg J; Stanyon R; Jauch A; Cremer T
    Chromosoma; 1992 Mar; 101(5-6):265-70. PubMed ID: 1576879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unraveling the chromosome 17 patterns of FISH in interphase nuclei: an in-depth analysis of the HER2 amplicon and chromosome 17 centromere by karyotyping, FISH and M-FISH in breast cancer cells.
    Rondón-Lagos M; Verdun Di Cantogno L; Rangel N; Mele T; Ramírez-Clavijo SR; Scagliotti G; Marchiò C; Sapino A
    BMC Cancer; 2014 Dec; 14():922. PubMed ID: 25481507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined Q-banding and fluorescence in situ hybridization for the identification of bovine chromosomes 1 to 7.
    Solinas-Toldo S; Mezzelani A; Hawkins GA; Bishop MD; Olsaker I; Mackinlay A; Ferretti L; Fries R
    Cytogenet Cell Genet; 1995; 69(1-2):1-6. PubMed ID: 7835074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of chromosomal abnormalities in prostate cancer cell lines by spectral karyotyping.
    Pan Y; Kytölä S; Farnebo F; Wang N; Lui WO; Nupponen N; Isola J; Visakorpi T; Bergerheim US; Larsson C
    Cytogenet Cell Genet; 1999; 87(3-4):225-32. PubMed ID: 10702678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interphase cytogenetics of hematological cancer: comparison of classical karyotyping and in situ hybridization using a panel of eleven chromosome specific DNA probes.
    Poddighe PJ; Moesker O; Smeets D; Awwad BH; Ramaekers FC; Hopman AH
    Cancer Res; 1991 Apr; 51(7):1959-67. PubMed ID: 2004382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel combined 15q11.2 duplication and a bisatellited supernumerary marker derived from chromosome 22: molecular characterization of the marker.
    Dutta UR; Vempally S; Ranganath P; Dalal A
    Gene; 2014 Apr; 539(1):162-7. PubMed ID: 24508374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential markers of prostate cancer aggressiveness detected by fluorescence in situ hybridization in needle biopsies.
    Takahashi S; Qian J; Brown JA; Alcaraz A; Bostwick DG; Lieber MM; Jenkins RB
    Cancer Res; 1994 Jul; 54(13):3574-9. PubMed ID: 8012984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromosome painting and quantitative karyotyping of colon adenocarcinoma cell lines, DLD-1 and HCT-15.
    Chen TR; Nierman WC
    Anticancer Res; 1994; 14(1A):109-12. PubMed ID: 8166435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multicolor FISH probe sets and their applications.
    Liehr T; Starke H; Weise A; Lehrer H; Claussen U
    Histol Histopathol; 2004 Jan; 19(1):229-37. PubMed ID: 14702191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 5q11, 8p11, and 10q22 are recurrent chromosomal breakpoints in prostate cancer cell lines.
    Pan Y; Lui WO; Nupponen N; Larsson C; Isola J; Visakorpi T; Bergerheim US; Kytölä S
    Genes Chromosomes Cancer; 2001 Feb; 30(2):187-95. PubMed ID: 11135436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.