BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 15823019)

  • 1. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM; Carruthers A
    Biochemistry; 2005 Feb; 44(7):2650-60. PubMed ID: 15709778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and physiologic determinants of human erythrocyte sugar transport regulation by adenosine triphosphate.
    Levine KB; Cloherty EK; Fidyk NJ; Carruthers A
    Biochemistry; 1998 Sep; 37(35):12221-32. PubMed ID: 9724536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular determinants of sugar transport regulation by ATP.
    Levine KB; Cloherty EK; Hamill S; Carruthers A
    Biochemistry; 2002 Oct; 41(42):12629-38. PubMed ID: 12379105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Glut1 glucose transporter in human erythrocytes.
    Zhang JZ; Ismail-Beigi F
    Arch Biochem Biophys; 1998 Aug; 356(1):86-92. PubMed ID: 9681995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast.
    Sedlak M; Ho NW
    Yeast; 2004 Jun; 21(8):671-84. PubMed ID: 15197732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization.
    Zottola RJ; Cloherty EK; Coderre PE; Hansen A; Hebert DN; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9734-47. PubMed ID: 7626644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties and heterologous expression of the glucose transporter GHT1 from Schizosaccharomyces pombe.
    Lichtenberg-Fraté H; Näschen T; Heiland S; Höfer M
    Yeast; 1997 Mar; 13(3):215-24. PubMed ID: 9090050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods.
    Li XB; Szerencsei RT; Schnetkamp PP
    Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter.
    Brekkan E; Lundqvist A; Lundahl P
    Biochemistry; 1996 Sep; 35(37):12141-5. PubMed ID: 8810921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of glucose transport and glucose transporters in the human choriocarcinoma cell line, BeWo.
    Shah SW; Zhao H; Low SY; Mcardle HJ; Hundal HS
    Placenta; 1999 Nov; 20(8):651-9. PubMed ID: 10527819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexose transporter GLUT1 harbors several distinct regulatory binding sites for flavones and tyrphostins.
    Pérez A; Ojeda P; Ojeda L; Salas M; Rivas CI; Vera JC; Reyes AM
    Biochemistry; 2011 Oct; 50(41):8834-45. PubMed ID: 21899256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The large cytoplasmic loop of the glucose transporter GLUT1 is an essential structural element for function.
    Monden I; Olsowski A; Krause G; Keller K
    Biol Chem; 2001 Nov; 382(11):1551-8. PubMed ID: 11767944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.
    Ojelabi OA; Lloyd KP; Simon AH; De Zutter JK; Carruthers A
    J Biol Chem; 2016 Dec; 291(52):26762-26772. PubMed ID: 27836974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.