BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 15823533)

  • 1. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation.
    Steinacher R; Schär P
    Curr Biol; 2005 Apr; 15(7):616-23. PubMed ID: 15823533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover.
    Hardeland U; Steinacher R; Jiricny J; Schär P
    EMBO J; 2002 Mar; 21(6):1456-64. PubMed ID: 11889051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1.
    Baba D; Maita N; Jee JG; Uchimura Y; Saitoh H; Sugasawa K; Hanaoka F; Tochio H; Hiroaki H; Shirakawa M
    Nature; 2005 Jun; 435(7044):979-82. PubMed ID: 15959518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC
    J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of SUMO-3-modified thymine-DNA glycosylase.
    Baba D; Maita N; Jee JG; Uchimura Y; Saitoh H; Sugasawa K; Hanaoka F; Tochio H; Hiroaki H; Shirakawa M
    J Mol Biol; 2006 May; 359(1):137-47. PubMed ID: 16626738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The thymine-DNA glycosylase regulatory domain: residual structure and DNA binding.
    Smet-Nocca C; Wieruszeski JM; Chaar V; Leroy A; Benecke A
    Biochemistry; 2008 Jun; 47(25):6519-30. PubMed ID: 18512959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMO modification: wrestling with protein conformation.
    Ulrich HD
    Curr Biol; 2005 Apr; 15(7):R257-9. PubMed ID: 15823527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment.
    Mohan RD; Rao A; Gagliardi J; Tini M
    Mol Cell Biol; 2007 Jan; 27(1):229-43. PubMed ID: 17060459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex.
    Fitzgerald ME; Drohat AC
    J Biol Chem; 2008 Nov; 283(47):32680-90. PubMed ID: 18805789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo.
    McLaughlin D; Coey CT; Yang WC; Drohat AC; Matunis MJ
    J Biol Chem; 2016 Apr; 291(17):9014-24. PubMed ID: 26917720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SUMO-1 regulates the conformational dynamics of thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity.
    Smet-Nocca C; Wieruszeski JM; Léger H; Eilebrecht S; Benecke A
    BMC Biochem; 2011 Feb; 12():4. PubMed ID: 21284855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enigmatic thymine DNA glycosylase.
    Cortázar D; Kunz C; Saito Y; Steinacher R; Schär P
    DNA Repair (Amst); 2007 Apr; 6(4):489-504. PubMed ID: 17116428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing conformational changes in Ape1 during the progression of base excision repair.
    Yu E; Gaucher SP; Hadi MZ
    Biochemistry; 2010 May; 49(18):3786-96. PubMed ID: 20377204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SUMO-modification and elimination of the active DNA demethylation enzyme TDG in cultured human cells.
    Moriyama T; Fujimitsu Y; Yoshikai Y; Sasano T; Yamada K; Murakami M; Urano T; Sugasawa K; Saitoh H
    Biochem Biophys Res Commun; 2014 May; 447(3):419-24. PubMed ID: 24727457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of interaction between human 8-oxoguanine-DNA glycosylase and AP endonuclease.
    Sidorenko VS; Nevinsky GA; Zharkov DO
    DNA Repair (Amst); 2007 Mar; 6(3):317-28. PubMed ID: 17126083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase.
    Dong L; Mi R; Glass RA; Barry JN; Cao W
    DNA Repair (Amst); 2008 Dec; 7(12):1962-72. PubMed ID: 18789404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase.
    Coey CT; Drohat AC
    Nucleic Acids Res; 2018 Jun; 46(10):5159-5170. PubMed ID: 29660017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase.
    Shimizu Y; Iwai S; Hanaoka F; Sugasawa K
    EMBO J; 2003 Jan; 22(1):164-73. PubMed ID: 12505994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases.
    Mol CD; Arvai AS; Begley TJ; Cunningham RP; Tainer JA
    J Mol Biol; 2002 Jan; 315(3):373-84. PubMed ID: 11786018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2.
    Hardeland U; Kunz C; Focke F; Szadkowski M; Schär P
    Nucleic Acids Res; 2007; 35(11):3859-67. PubMed ID: 17526518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.