BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15823611)

  • 1. Tomato spotted wilt virus transcriptase in vitro displays a preference for cap donors with multiple base complementarity to the viral template.
    van Knippenberg I; Lamine M; Goldbach R; Kormelink R
    Virology; 2005 Apr; 335(1):122-30. PubMed ID: 15823611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A convenient in vivo cap donor delivery system to investigate the cap snatching of plant bunyaviruses.
    Lin W; Wu R; Qiu P; Jing Jin ; Yang Y; Wang J; Lin Z; Zhang J; Wu Z; Du Z
    Virology; 2020 Jan; 539():114-120. PubMed ID: 31710910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements.
    Duijsings D; Kormelink R; Goldbach R
    EMBO J; 2001 May; 20(10):2545-52. PubMed ID: 11350944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rice Stripe Tenuivirus Has a Greater Tendency To Use the Prime-and-Realign Mechanism in Transcription of Genomic than in Transcription of Antigenomic Template RNAs.
    Liu X; Jin J; Qiu P; Gao F; Lin W; Xie G; He S; Liu S; Du Z; Wu Z
    J Virol; 2018 Jan; 92(1):. PubMed ID: 29046442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence analysis of the 5' ends of tomato spotted wilt virus N mRNAs.
    van Poelwijk F; Kolkman J; Goldbach R
    Arch Virol; 1996; 141(1):177-84. PubMed ID: 8629946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alfalfa mosaic virus RNAs serve as cap donors for tomato spotted wilt virus transcription during coinfection of Nicotiana benthamiana.
    Duijsings D; Kormelink R; Goldbach R
    J Virol; 1999 Jun; 73(6):5172-5. PubMed ID: 10233983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purified tomato spotted wilt virus particles support both genome replication and transcription in vitro.
    van Knippenberg I; Goldbach R; Kormelink R
    Virology; 2002 Nov; 303(2):278-86. PubMed ID: 12490389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bunyaviral N Proteins Localize at RNA Processing Bodies and Stress Granules: The Enigma of Cytoplasmic Sources of Capped RNA for Cap Snatching.
    Xu M; Mazur M; Gulickx N; Hong H; Overmars H; Tao X; Kormelink R
    Viruses; 2022 Jul; 14(8):. PubMed ID: 36016301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signatures of host mRNA 5' terminus for efficient hantavirus cap snatching.
    Cheng E; Mir MA
    J Virol; 2012 Sep; 86(18):10173-85. PubMed ID: 22787213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cap-snatching as a possible contributor to photosynthesis shut-off.
    Xu M; Risse J; Kormelink R
    J Gen Virol; 2022 Aug; 103(8):. PubMed ID: 35947091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription.
    Reguera J; Weber F; Cusack S
    PLoS Pathog; 2010 Sep; 6(9):e1001101. PubMed ID: 20862319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base-pairing promotes leader selection to prime in vitro influenza genome transcription.
    Geerts-Dimitriadou C; Zwart MP; Goldbach R; Kormelink R
    Virology; 2011 Jan; 409(1):17-26. PubMed ID: 21051068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential use of RNA leader sequences during influenza A transcription initiation in vivo.
    Geerts-Dimitriadou C; Goldbach R; Kormelink R
    Virology; 2011 Jan; 409(1):27-32. PubMed ID: 21030059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants.
    Mitter N; Koundal V; Williams S; Pappu H
    PLoS One; 2013; 8(10):e76276. PubMed ID: 24143182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influenza A virus utilizes noncanonical cap-snatching to diversify its mRNA/ncRNA.
    Li L; Dai H; Nguyen AP; Hai R; Gu W
    RNA; 2020 Sep; 26(9):1170-1183. PubMed ID: 32444459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the Tomato spotted wilt virus ambisense S RNA-encoded hairpin structure in translation.
    Geerts-Dimitriadou C; Lu YY; Geertsema C; Goldbach R; Kormelink R
    PLoS One; 2012; 7(2):e31013. PubMed ID: 22363535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot tospovirus reveals host-specific responses to viral infection.
    Margaria P; Miozzi L; Ciuffo M; Rosa C; Axtell MJ; Pappu HR; Turina M
    Virus Res; 2016 Jan; 211():38-45. PubMed ID: 26432447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Mechanism for the Formation of the Ribonucleoprotein Complex of Tomato Spotted Wilt Virus.
    Guo Y; Liu B; Ding Z; Li G; Liu M; Zhu D; Sun Y; Dong S; Lou Z
    J Virol; 2017 Dec; 91(23):. PubMed ID: 28904194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation.
    Yao M; Zhang T; Zhou T; Zhou Y; Zhou X; Tao X
    J Gen Virol; 2012 Jan; 93(Pt 1):194-202. PubMed ID: 21918010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of tomato spotted wilt virus RNA-dependent RNA polymerase adaptative evolution and constrained domains using homology protein structure modelling.
    Terret-Welter Z; Bonnet G; Moury B; Gallois JL
    J Gen Virol; 2020 Mar; 101(3):334-346. PubMed ID: 31958051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.