BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15824036)

  • 1. Manufacturing techniques of biodegradable implants intended for intraocular application.
    Fialho SL; da Silva Cunha A
    Drug Deliv; 2005; 12(2):109-16. PubMed ID: 15824036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants.
    Rothen-Weinhold A; Besseghir K; Vuaridel E; Sublet E; Oudry N; Kubel F; Gurny R
    Eur J Pharm Biopharm; 1999 Sep; 48(2):113-21. PubMed ID: 10469929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable implants for sustained drug release in the eye.
    Lee SS; Hughes P; Ross AD; Robinson MR
    Pharm Res; 2010 Oct; 27(10):2043-53. PubMed ID: 20535532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability studies of a somatostatin analogue in biodegradable implants.
    Rothen-Weinhold A; Besseghir K; Vuaridel E; Sublet E; Oudry N; Gurny R
    Int J Pharm; 1999 Feb; 178(2):213-21. PubMed ID: 10205641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of dexamethasone ophthalmic implants: a comparative study of in vitro release profiles.
    Prata AI; Coimbra P; Pina ME
    Pharm Dev Technol; 2018 Mar; 23(3):218-224. PubMed ID: 28300463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and In Vitro Evaluation of a Slow-Release Intraocular Implant of Betamethasone.
    Rastegar Ramsheh ZS; Mohtashami Z; Kargar N; Akbari Javar H; Rafiee Tehrani M; Abedin Dorkoosh F
    AAPS PharmSciTech; 2021 Jun; 22(5):174. PubMed ID: 34114068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation and evaluation of controlled release antibiotic biodegradable implants for post operative site delivery.
    Mathur V; Mudnaik R; Barde L; Roy A; Shivhare U; Bhusari K
    Acta Pharm; 2010 Mar; 60(1):111-7. PubMed ID: 20228045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dexamethasone Degradation in Aqueous Medium and Implications for Correction of In Vitro Release from Sustained Release Delivery Systems.
    Matter B; Ghaffari A; Bourne D; Wang Y; Choi S; Kompella UB
    AAPS PharmSciTech; 2019 Oct; 20(8):320. PubMed ID: 31646399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable chitosan and polylactic acid-based intraocular micro-implant for sustained release of methotrexate into vitreous: analysis of pharmacokinetics and toxicity in rabbit eyes.
    Manna S; Banerjee RK; Augsburger JJ; Al-Rjoub MF; Donnell A; Correa ZM
    Graefes Arch Clin Exp Ophthalmol; 2015 Aug; 253(8):1297-305. PubMed ID: 25896109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance.
    Grayson AC; Cima MJ; Langer R
    Biomaterials; 2005 May; 26(14):2137-45. PubMed ID: 15576189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies.
    Herrero-Vanrell R; Bravo-Osuna I; Andrés-Guerrero V; Vicario-de-la-Torre M; Molina-Martínez IT
    Prog Retin Eye Res; 2014 Sep; 42():27-43. PubMed ID: 24819336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic biodegradable polyesters for implantable controlled-release devices.
    Pothupitiya JU; Zheng C; Saltzman WM
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1351-1364. PubMed ID: 36197839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Hollow Hyaluronic Acid Cylinders for Sustained Intravitreal Protein Delivery.
    Van Kampen E; Vandervelden C; Fakhari A; Qian J; Berkland C; Gehrke SH
    J Pharm Sci; 2018 Sep; 107(9):2354-2365. PubMed ID: 29729900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of a biodegradable microneedle implant loaded with methotrexate as a sustained release device in normal rabbit eye: a pilot study.
    Palakurthi NK; Correa ZM; Augsburger JJ; Banerjee RK
    J Ocul Pharmacol Ther; 2011 Apr; 27(2):151-6. PubMed ID: 21323470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraocular sustained drug delivery using implantable polymeric devices.
    Yasukawa T; Ogura Y; Sakurai E; Tabata Y; Kimura H
    Adv Drug Deliv Rev; 2005 Dec; 57(14):2033-46. PubMed ID: 16263193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biodegradable ocular implant for long-term suppression of intraocular pressure.
    Ng XW; Liu KL; Veluchamy AB; Lwin NC; Wong TT; Venkatraman SS
    Drug Deliv Transl Res; 2015 Oct; 5(5):469-79. PubMed ID: 26100093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin.
    Kim M; Jung B; Park JH
    Biomaterials; 2012 Jan; 33(2):668-78. PubMed ID: 22000788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advancemnts in Biodegradable Ocular Implants.
    Mittal S; Miranda O
    Curr Drug Deliv; 2018 Feb; 15(2):144-154. PubMed ID: 28482784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ micro-sized gel-forming injectable implant using biodegradable amphiphilic graft copolymer.
    Cho KY; Lee S; Park JK
    Macromol Biosci; 2007 Jun; 7(6):784-8. PubMed ID: 17541923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot Melt Extrusion for Sustained Protein Release: Matrix Erosion and In Vitro Release of PLGA-Based Implants.
    Cossé A; König C; Lamprecht A; Wagner KG
    AAPS PharmSciTech; 2017 Jan; 18(1):15-26. PubMed ID: 27193002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.