These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15824062)

  • 21. Visualization of two binding sites for the Escherichia coli UmuD'(2)C complex (DNA pol V) on RecA-ssDNA filaments.
    Frank EG; Cheng N; Do CC; Cerritelli ME; Bruck I; Goodman MF; Egelman EH; Woodgate R; Steven AC
    J Mol Biol; 2000 Mar; 297(3):585-97. PubMed ID: 10731413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The simultaneous binding of two double-stranded DNA molecules by Escherichia coli RecA protein.
    Zaitsev EN; Kowalczykowski SC
    J Mol Biol; 1999 Mar; 287(1):21-31. PubMed ID: 10074404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel pairing process promoted by Escherichia coli RecA protein: inverse DNA and RNA strand exchange.
    Zaitsev EN; Kowalczykowski SC
    Genes Dev; 2000 Mar; 14(6):740-9. PubMed ID: 10733533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RecA-promoted, RecFOR-independent progressive disassembly of replisomes stalled by helicase inactivation.
    Lia G; Rigato A; Long E; Chagneau C; Le Masson M; Allemand JF; Michel B
    Mol Cell; 2013 Feb; 49(3):547-57. PubMed ID: 23260658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homologous genetic recombination as an intrinsic dynamic property of a DNA structure induced by RecA/Rad51-family proteins: a possible advantage of DNA over RNA as genomic material.
    Shibata T; Nishinaka T; Mikawa T; Aihara H; Kurumizaka H; Yokoyama S; Ito Y
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8425-32. PubMed ID: 11459985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A RecA mutant, RecA(730), suppresses the recombination deficiency of the RecBC(1004)D-chi* interaction in vitro and in vivo.
    Handa N; Kowalczykowski SC
    J Mol Biol; 2007 Feb; 365(5):1314-25. PubMed ID: 17141804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct visualization of the formation of RecA/dsDNA complexes at the single-molecule level.
    Li BS; Wei B; Goh MC
    Micron; 2012 Oct; 43(10):1073-5. PubMed ID: 22633148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time observation of RecA filament dynamics with single monomer resolution.
    Joo C; McKinney SA; Nakamura M; Rasnik I; Myong S; Ha T
    Cell; 2006 Aug; 126(3):515-27. PubMed ID: 16901785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hRad51 and RecA proteins show significant differences in cooperative binding to single-stranded DNA.
    De Zutter JK; Knight KL
    J Mol Biol; 1999 Nov; 293(4):769-80. PubMed ID: 10543966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Interaction with DNA and aggregation properties of C-terminal fragment of RecA protein].
    Volodin AA
    Mol Biol (Mosk); 1990; 24(1):179-88. PubMed ID: 2348820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacillus subtilis RecU Holliday-junction resolvase modulates RecA activities.
    Carrasco B; Ayora S; Lurz R; Alonso JC
    Nucleic Acids Res; 2005; 33(12):3942-52. PubMed ID: 16024744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of DNA sequence and structure on binding of RecA to single-stranded DNA.
    Bar-Ziv R; Libchaber A
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9068-73. PubMed ID: 11470894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct evidence of the role of ATPγS in the binding of single-stranded binding protein (Escherichia coli) and RecA to single-stranded DNA.
    Li BS; Goh MC
    Langmuir; 2010 Sep; 26(18):14755-8. PubMed ID: 20722443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The stretched DNA geometry of recombination and repair nucleoprotein filaments.
    Singleton SF; Xiao J
    Biopolymers; 2001-2002; 61(3):145-58. PubMed ID: 11987178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of nucleoprotein RecA filament on single-stranded DNA. Analysis by stepwise increase in ligand complexity.
    Bugreeva IP; Bugreev DV; Nevinsky GA
    FEBS J; 2005 Jun; 272(11):2734-45. PubMed ID: 15943808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1.
    Bennink ML; Schärer OD; Kanaar R; Sakata-Sogawa K; Schins JM; Kanger JS; de Grooth BG; Greve J
    Cytometry; 1999 Jul; 36(3):200-8. PubMed ID: 10404969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring Single-Molecule Twist and Torque in Multiplexed Magnetic Tweezers.
    Kriegel F; Vanderlinden W; Nicolaus T; Kardinal A; Lipfert J
    Methods Mol Biol; 2018; 1814():75-98. PubMed ID: 29956228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double-stranded RNA under force and torque: similarities to and striking differences from double-stranded DNA.
    Lipfert J; Skinner GM; Keegstra JM; Hensgens T; Jager T; Dulin D; Köber M; Yu Z; Donkers SP; Chou FC; Das R; Dekker NH
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15408-13. PubMed ID: 25313077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophoretic force on a protein-coated DNA molecule in a solid-state nanopore.
    Hall AR; van Dorp S; Lemay SG; Dekker C
    Nano Lett; 2009 Dec; 9(12):4441-5. PubMed ID: 19780587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the mechanical response of double-stranded DNA and RNA under constant stretching forces using all-atom molecular dynamics.
    Marin-Gonzalez A; Vilhena JG; Perez R; Moreno-Herrero F
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7049-7054. PubMed ID: 28634300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.