BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15824115)

  • 21. Structural insights into the role of the acid-alcohol pair of residues required for dioxygen activation in cytochrome P450 enzymes.
    Coleman T; Stok JE; Podgorski MN; Bruning JB; De Voss JJ; Bell SG
    J Biol Inorg Chem; 2020 Jun; 25(4):583-596. PubMed ID: 32248305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resolution of two substrate-binding sites in an engineered cytochrome P450eryF bearing a fluorescent probe.
    Davydov DR; Botchkareva AE; Davydova NE; Halpert JR
    Biophys J; 2005 Jul; 89(1):418-32. PubMed ID: 15834000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preliminary crystallographic analysis of an enzyme involved in erythromycin biosynthesis: cytochrome P450eryF.
    Cupp-Vickery JR; Li H; Poulos TL
    Proteins; 1994 Oct; 20(2):197-201. PubMed ID: 7846029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of two alternate water networks in Compound I formation in P450eryF.
    Sen K; Thiel W
    J Phys Chem B; 2014 Mar; 118(11):2810-20. PubMed ID: 24564366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron.
    Karlsson A; Parales JV; Parales RE; Gibson DT; Eklund H; Ramaswamy S
    Science; 2003 Feb; 299(5609):1039-42. PubMed ID: 12586937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homotropic versus heterotopic cooperativity of cytochrome P450eryF: a substrate oxidation and spectral titration study.
    Khan KK; Liu H; Halpert JR
    Drug Metab Dispos; 2003 Apr; 31(4):356-9. PubMed ID: 12642459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The critical role of substrate-protein hydrogen bonding in the control of regioselective hydroxylation in p450cin.
    Meharenna YT; Slessor KE; Cavaignac SM; Poulos TL; De Voss JJ
    J Biol Chem; 2008 Apr; 283(16):10804-12. PubMed ID: 18270198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex.
    Prigge ST; Eipper BA; Mains RE; Amzel LM
    Science; 2004 May; 304(5672):864-7. PubMed ID: 15131304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational dynamics in cytochrome P450-substrate interactions.
    Li H; Poulos TL
    Biochimie; 1996; 78(8-9):695-9. PubMed ID: 9010597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine.
    Winn PJ; Lüdemann SK; Gauges R; Lounnas V; Wade RC
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5361-6. PubMed ID: 11959989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structures of the ferric, ferrous, and ferrous-NO forms of the Asp140Ala mutant of human heme oxygenase-1: catalytic implications.
    Lad L; Wang J; Li H; Friedman J; Bhaskar B; Ortiz de Montellano PR; Poulos TL
    J Mol Biol; 2003 Jul; 330(3):527-38. PubMed ID: 12842469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid.
    Li H; Poulos TL
    Nat Struct Biol; 1997 Feb; 4(2):140-6. PubMed ID: 9033595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The catalytic pathway of cytochrome p450cam at atomic resolution.
    Schlichting I; Berendzen J; Chu K; Stock AM; Maves SA; Benson DE; Sweet RM; Ringe D; Petsko GA; Sligar SG
    Science; 2000 Mar; 287(5458):1615-22. PubMed ID: 10698731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. X-ray crystal structure and catalytic properties of Thr252Ile mutant of cytochrome P450cam: roles of Thr252 and water in the active center.
    Hishiki T; Shimada H; Nagano S; Egawa T; Kanamori Y; Makino R; Park SY; Adachi S; Shiro Y; Ishimura Y
    J Biochem; 2000 Dec; 128(6):965-74. PubMed ID: 11098139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis.
    Atkins WM; Sligar SG
    J Biol Chem; 1988 Dec; 263(35):18842-9. PubMed ID: 3198602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 2.2 A structure of oxy-peroxidase as a model for the transient enzyme: peroxide complex.
    Miller MA; Shaw A; Kraut J
    Nat Struct Biol; 1994 Aug; 1(8):524-31. PubMed ID: 7664080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Updating the Paradigm: Redox Partner Binding and Conformational Dynamics in Cytochromes P450.
    Poulos TL; Follmer AH
    Acc Chem Res; 2022 Feb; 55(3):373-380. PubMed ID: 34965086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen activation and electron transfer in flavocytochrome P450 BM3.
    Ost TW; Clark J; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK; Daff S
    J Am Chem Soc; 2003 Dec; 125(49):15010-20. PubMed ID: 14653735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.