These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15824314)

  • 1. Local and long-range stability in tandemly arrayed tetratricopeptide repeats.
    Main ER; Stott K; Jackson SE; Regan L
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5721-6. PubMed ID: 15824314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the multistate folding of designed TPR proteins through intrinsic and extrinsic factors.
    Phillips JJ; Javadi Y; Millership C; Main ER
    Protein Sci; 2012 Mar; 21(3):327-38. PubMed ID: 22170589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the folding energy landscape of a series of designed consensus tetratricopeptide repeat proteins.
    Javadi Y; Main ER
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17383-8. PubMed ID: 19805120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins.
    Kajander T; Cortajarena AL; Mochrie S; Regan L
    Acta Crystallogr D Biol Crystallogr; 2007 Jul; 63(Pt 7):800-11. PubMed ID: 17582171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the energy landscape of repeat proteins using NMR-detected hydrogen exchange.
    Cortajarena AL; Mochrie SG; Regan L
    J Mol Biol; 2008 Jun; 379(3):617-26. PubMed ID: 18462750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the backbone dynamics of a natural and a consensus designed 3-TPR domain.
    Jarymowycz VA; Cortajarena AL; Regan L; Stone MJ
    J Biomol NMR; 2008 Jul; 41(3):169-78. PubMed ID: 18566891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeat motions and backbone flexibility in designed proteins with different numbers of identical consensus tetratricopeptide repeats.
    Cheng CY; Jarymowycz VA; Cortajarena AL; Regan L; Stone MJ
    Biochemistry; 2006 Oct; 45(39):12175-83. PubMed ID: 17002317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric study of a series of designed repeat proteins: modular structure and modular folding.
    Cortajarena AL; Regan L
    Protein Sci; 2011 Feb; 20(2):336-40. PubMed ID: 21280125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of stable alpha-helical arrays from an idealized TPR motif.
    Main ER; Xiong Y; Cocco MJ; D'Andrea L; Regan L
    Structure; 2003 May; 11(5):497-508. PubMed ID: 12737816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold.
    Wilson CG; Kajander T; Regan L
    FEBS J; 2005 Jan; 272(1):166-79. PubMed ID: 15634341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif.
    Magliery TJ; Regan L
    J Mol Biol; 2004 Oct; 343(3):731-45. PubMed ID: 15465058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating repeat protein stability: the effect of individual helix stability on the collective behavior of the ensemble.
    Cortajarena AL; Mochrie SG; Regan L
    Protein Sci; 2011 Jun; 20(6):1042-7. PubMed ID: 21495096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular recognition via coupled folding and binding in a TPR domain.
    Cliff MJ; Williams MA; Brooke-Smith J; Barford D; Ladbury JE
    J Mol Biol; 2005 Feb; 346(3):717-32. PubMed ID: 15713458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting and reprogramming the folding and assembly of tandem-repeat proteins.
    Rowling PJ; Sivertsson EM; Perez-Riba A; Main ER; Itzhaki LS
    Biochem Soc Trans; 2015 Oct; 43(5):881-8. PubMed ID: 26517898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Context-Dependent Energetics of Loop Extensions in a Family of Tandem-Repeat Proteins.
    Perez-Riba A; Lowe AR; Main ERG; Itzhaki LS
    Biophys J; 2018 Jun; 114(11):2552-2562. PubMed ID: 29874606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem-repeat proteins: regularity plus modularity equals design-ability.
    Javadi Y; Itzhaki LS
    Curr Opin Struct Biol; 2013 Aug; 23(4):622-31. PubMed ID: 23831287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pH-dependent tertiary structure of a designed helix-loop-helix dimer.
    Dolphin GT; Baltzer L
    Fold Des; 1997; 2(5):319-30. PubMed ID: 9377715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of entropy, enthalpy, and hydrophobic desolvation to cooperativity in repeat-protein folding.
    Aksel T; Majumdar A; Barrick D
    Structure; 2011 Mar; 19(3):349-60. PubMed ID: 21397186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile TPR domains accommodate different modes of target protein recognition and function.
    Allan RK; Ratajczak T
    Cell Stress Chaperones; 2011 Jul; 16(4):353-67. PubMed ID: 21153002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions.
    Das AK; Cohen PW; Barford D
    EMBO J; 1998 Mar; 17(5):1192-9. PubMed ID: 9482716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.