These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 15824899)

  • 21. Tick vaccines and the control of tick-borne pathogens.
    Merino O; Alberdi P; Pérez de la Lastra JM; de la Fuente J
    Front Cell Infect Microbiol; 2013; 3():30. PubMed ID: 23847771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases.
    Nuttall PA; Trimnell AR; Kazimirova M; Labuda M
    Parasite Immunol; 2006 Apr; 28(4):155-63. PubMed ID: 16542317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tick vaccines: current status and future directions.
    de la Fuente J; Contreras M
    Expert Rev Vaccines; 2015; 14(10):1367-76. PubMed ID: 26289976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vaccinomics, the new road to tick vaccines.
    de la Fuente J; Merino O
    Vaccine; 2013 Dec; 31(50):5923-9. PubMed ID: 24396872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection.
    Merino O; Antunes S; Mosqueda J; Moreno-Cid JA; Pérez de la Lastra JM; Rosario-Cruz R; Rodríguez S; Domingos A; de la Fuente J
    Vaccine; 2013 Dec; 31(49):5889-96. PubMed ID: 24084474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the development of Ixodes scapularis: a resource for research on a medically important tick species.
    Kocan KM; de la Fuente J; Coburn LA
    Parasit Vectors; 2015 Nov; 8():592. PubMed ID: 26576940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of novel tick salivary gland proteins for vaccine development.
    Xu Y; Bruno JF; Luft BJ
    Biochem Biophys Res Commun; 2005 Jan; 326(4):901-4. PubMed ID: 15607754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactomics and tick vaccine development: new directions for the control of tick-borne diseases.
    Artigas-Jerónimo S; De La Fuente J; Villar M
    Expert Rev Proteomics; 2018 Aug; 15(8):627-635. PubMed ID: 30067120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tick-Tattoo: DNA Vaccination Against
    Klouwens MJ; Trentelman JJA; Wagemakers A; Ersoz JI; Bins AD; Hovius JW
    Front Immunol; 2021; 12():615011. PubMed ID: 33717102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening for the "Achilles Heel" of Hyalomma anatolicum Ticks by RNA Interference Technology and an Update on Anti-Tick Vaccine Design.
    Manjunathachar HV; Azhahianambi P; Kumar B; Ghosh S
    Methods Mol Biol; 2022; 2411():307-330. PubMed ID: 34816413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Perspectives of creation of vaccines against tick bite for nonspecific prophylaxis of vector borne diseases].
    Diatlov IA; Biketov SF; Firstova VV
    Zh Mikrobiol Epidemiol Immunobiol; 2011; (4):101-6. PubMed ID: 21913400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA interference in ticks.
    Kocan KM; Blouin E; de la Fuente J
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subolesin knockdown in tick cells provides insights into vaccine protective mechanisms.
    Artigas-Jerónimo S; Villar M; Estrada-Peña A; Alberdi P; de la Fuente J
    Vaccine; 2024 Apr; 42(11):2801-2809. PubMed ID: 38508929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling tick vaccines: a key tool to improve protection efficacy.
    de la Fuente J; Estrada-Peña A; Contreras M
    Expert Rev Vaccines; 2020 Mar; 19(3):217-225. PubMed ID: 32192377
    [No Abstract]   [Full Text] [Related]  

  • 35. Subolesin/akirin orthologs from Ornithodoros spp. soft ticks: cloning, RNAi gene silencing and protective effect of the recombinant proteins.
    Manzano-Román R; Díaz-Martín V; Oleaga A; Siles-Lucas M; Pérez-Sánchez R
    Vet Parasitol; 2012 Apr; 185(2-4):248-59. PubMed ID: 22105082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current status and future prospects of multi-antigen tick vaccine.
    Parthasarathi BC; Kumar B; Ghosh S
    J Vector Borne Dis; 2021; 58(3):183-192. PubMed ID: 35170454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anti-tick vaccines.
    Willadsen P
    Parasitology; 2004; 129 Suppl():S367-87. PubMed ID: 15938519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Partial pathogen protection by tick-bite sensitization and epitope recognition in peptide-immunized HLA DR3 transgenic mice.
    Shattuck WM; Dyer MC; Desrosiers J; Fast LD; Terry FE; Martin WD; Moise L; De Groot AS; Mather TN
    Hum Vaccin Immunother; 2014; 10(10):3048-59. PubMed ID: 25517089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and characterization of Ixodes scapularis antigens that elicit tick immunity using yeast surface display.
    Schuijt TJ; Narasimhan S; Daffre S; DePonte K; Hovius JW; Van't Veer C; van der Poll T; Bakhtiari K; Meijers JC; Boder ET; van Dam AP; Fikrig E
    PLoS One; 2011 Jan; 6(1):e15926. PubMed ID: 21246036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disruption of Ixodes scapularis anticoagulation by using RNA interference.
    Narasimhan S; Montgomery RR; DePonte K; Tschudi C; Marcantonio N; Anderson JF; Sauer JR; Cappello M; Kantor FS; Fikrig E
    Proc Natl Acad Sci U S A; 2004 Feb; 101(5):1141-6. PubMed ID: 14745044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.