These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1582494)

  • 1. In vivo incorporation of 14C-phenylalanine into ascidian tunichrome.
    He X; Kustin K; Parry DL; Robinson WE; Ruberto G; Nakanishi K
    Experientia; 1992 Apr; 48(4):367-71. PubMed ID: 1582494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of tunichrome B-1, a reducing blood pigment of the sea squirt, Ascidia nigra.
    Bruening RC; Oltz EM; Furukawa J; Nakanishi K; Kustin K
    J Nat Prod; 1986; 49(2):193-204. PubMed ID: 3755466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunichrome content in the blood cells of the tunicate, Ascidia callosa Stimpson, as an indicator of vanadium distribution.
    Robinson WE; Agudelo MI; Kustin K
    Comp Biochem Physiol A Comp Physiol; 1984; 78(4):667-73. PubMed ID: 6149041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plicatamide: A lead to the biosynthetic origins of the tunichromes?
    Tincu JA; Craig AG; Taylor SW
    Biochem Biophys Res Commun; 2000 Apr; 270(2):421-4. PubMed ID: 10753640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of tunichrome and other reducing compounds on tunic and fin formation in embryonic Ascidia callosa Stimpson.
    Robinson WE; Kustin K; Cloney RA
    J Exp Zool; 1986 Jan; 237(1):63-72. PubMed ID: 3753999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, properties and structural studies on a compound from tunicate blood cells that may be involved in vanadium accumulation.
    Macara IG; McLeod GC; Kustin K
    Biochem J; 1979 Aug; 181(2):457-65. PubMed ID: 496893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of tunichrome and vanadium in sea squirt blood cells sorted by flow cytometry.
    Oltz EM; Pollack S; Delohery T; Smith MJ; Ojika M; Lee S; Kustin K; Nakanishi K
    Experientia; 1989 Feb; 45(2):186-90. PubMed ID: 2920805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further characterization of tunicate and tunichrome electrochemiluminescence.
    Bruno JG; Collard SB; Andrews AR
    J Biolumin Chemilumin; 1997; 12(3):155-64. PubMed ID: 9427115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel 3,4-di- and 3,4,5-trihydroxyphenylalanine-containing polypeptides from the blood cells of the ascidians Ascidia ceratodes and Molgula manhattensis.
    Taylor SW; Ross MM; Waite JH
    Arch Biochem Biophys; 1995 Dec; 324(2):228-40. PubMed ID: 8554314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative transformation of a tunichrome model compound provides new insight into the crosslinking and defense reaction of tunichromes.
    Abebe A; Kuang QF; Evans J; Robinson WE; Sugumaran M
    Bioorg Chem; 2017 Apr; 71():219-229. PubMed ID: 28228229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions between tunichrome Mm-1, a tunicate blood pigment, and vanadium ions in acidic and neutral media.
    Ryan DE; Grant KB; Nakanishi K
    Biochemistry; 1996 Jul; 35(26):8640-50. PubMed ID: 8679626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intracellular pH of tunicate blood cells: Ascidia ceratodes whole blood, morula cells, vacuoles and cytoplasm.
    Lee SH; Nakanishi K; Kustin K
    Biochim Biophys Acta; 1990 Mar; 1033(3):311-7. PubMed ID: 2317507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunichrome sp-1: new pentapeptide tunichrome from the hemocytes of Styela plicata.
    Tincu JA; Taylor SW
    J Nat Prod; 2002 Mar; 65(3):377-8. PubMed ID: 11908983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemiluminescence from tunicate, tunichrome-metal complexes and other biological samples.
    Bruno JG; Collard SB; Kuch DJ; Cornette JC
    J Biolumin Chemilumin; 1996; 11(4-5):193-206. PubMed ID: 8910142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a vanadium-associated protein from the vanadium-rich ascidian, Ascidia sydneiensis samea.
    Kanda T; Nose Y; Wuchiyama J; Uyama T; Moriyama Y; Michibata H
    Zoolog Sci; 1997 Feb; 14(1):37-42. PubMed ID: 9200977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Incorporation of phenylalanine-H 3 in the fragments of fertilized ascidian eggs].
    Ortolani G; Mansueto-Bonaccorso C
    Riv Biol; 1972; 65(1):99-110. PubMed ID: 4673101
    [No Abstract]   [Full Text] [Related]  

  • 17. Measurement of hepatic protein synthesis in unrestrained mice-evaluation of the 'flooding technique'.
    Lundholm K; Ternell M; Zachrisson H; Moldawer L; Lindström L
    Acta Physiol Scand; 1991 Feb; 141(2):207-19. PubMed ID: 2048407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Role of phenylalanine in the biosynthesis of fluorescent pigment in Pseudomonas putida bacteria].
    Maksimova NL; Blazhevich OV; Fomichev IuK
    Mikrobiologiia; 1992; 61(5):818-23. PubMed ID: 1287406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragmentation of tunichrome Sp-1 is dominated by an unusual gas-phase intramolecular rearrangement.
    Taylor SW; Kassel DB; Tincu JA; Craig AG
    J Mass Spectrom; 2003 Oct; 38(10):1105-9. PubMed ID: 14595860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-dependent utilization of phenylalanine for the synthesis of neuronal and glial proteins.
    Johnson DE; Sellinger OZ
    Neurobiology; 1973; 3(2):113-23. PubMed ID: 16100959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.