BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15825217)

  • 1. Prediction of electrophoretic mobilities of peptides in capillary zone electrophoresis by quantitative structure-mobility relationships using the Offord model and artificial neural networks.
    Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG
    Electrophoresis; 2005 May; 26(10):1874-85. PubMed ID: 15825217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial neural network modeling of peptide mobility and peptide mapping in capillary zone electrophoresis.
    Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG
    J Chromatogr A; 2005 Nov; 1096(1-2):58-68. PubMed ID: 16216258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate quantitative structure-property relationship model of mobilities of peptides in capillary zone electrophoresis.
    Ma W; Luan F; Zhang H; Zhang X; Liu M; Hu Z; Fan B
    Analyst; 2006 Nov; 131(11):1254-60. PubMed ID: 17066195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative structure property relationship study of the electrophoretic mobilities of some benzoic acids derivatives in different carrier electrolyte compositions.
    Fatemi MH; Goudarzi N
    Electrophoresis; 2005 Aug; 26(15):2968-73. PubMed ID: 16007694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of migration models for acids in capillary electrophoresis using heuristic and radial basis function neural network methods.
    Xue C; Yao X; Liu H; Liu M; Hu Z; Fan B
    Electrophoresis; 2005 Jun; 26(11):2154-64. PubMed ID: 15852353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two variable semi-empirical and artificial neural-network-based modeling of peptide mobilities in CZE: the effect of temperature and organic modifier concentration.
    Mittermayr S; Chovan T; Guttman A
    Electrophoresis; 2009 Mar; 30(5):890-6. PubMed ID: 19197908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning techniques for the prediction of the peptide mobility in capillary zone electrophoresis.
    Yu K; Cheng Y
    Talanta; 2007 Feb; 71(2):676-82. PubMed ID: 19071359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and investigation of structure-mobility relationship of gonadotropin-releasing hormones by capillary zone electrophoresis in conventional and isoelectric acidic background electrolytes.
    Solínová V; Kasicka V; Sázelová P; Barth T; Miksík I
    J Chromatogr A; 2007 Jul; 1155(2):146-53. PubMed ID: 17229433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the electrophoretic mobility of beta-blockers in capillary electrophoresis using artificial neural networks.
    Jouyban A; Majidi MR; Asadpour-Zeynali K
    Farmaco; 2005 Mar; 60(3):255-9. PubMed ID: 15784246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using electrophoretic mobility and bead modeling to characterize the charge and secondary structure of peptides.
    Pei H; Xin Y; Allison SA
    J Sep Sci; 2008 Feb; 31(3):555-64. PubMed ID: 18219654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the electrophoretic mobility of analytes in binary solvent electrolyte systems in capillary electrophoresis using an artificial neural network.
    Jouyban A; Majidi MR; Altria KD; Clark BJ; Asadpour-Zeynali K
    Pharmazie; 2005 Sep; 60(9):656-60. PubMed ID: 16222863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophoretic mobilities and migrating analytes: Part 1: Relationships.
    Cross RF; Wong MG
    J Capill Electrophor Microchip Technol; 2002; 7(5-6):119-24. PubMed ID: 12546161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of electrophoretic mobilities of alkyl- and alkenylpyridines in capillary electrophoresis using artificial neural networks.
    Jalali-Heravi M; Garkani-Nejad Z
    J Chromatogr A; 2002 Sep; 971(1-2):207-15. PubMed ID: 12350116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary electrophoresis separation of vinpocetine and related compounds: prediction of electrophoretic mobilities in partly aqueous media.
    Mazák K; Szakács Z; Nemes A; Noszál B
    Electrophoresis; 2000 Jul; 21(12):2417-23. PubMed ID: 10939454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation and investigation of structure-mobility relationships of insect oostatic peptides by capillary zone electrophoresis.
    Solínová V; Kasicka V; Koval D; Hlavácek J
    Electrophoresis; 2004 Jul; 25(14):2299-308. PubMed ID: 15274012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the quantitative structure-mobility relationship of carboxylic acids in capillary electrophoresis based on support vector machines.
    Xue CX; Zhang RS; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2004; 44(3):950-7. PubMed ID: 15154762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic mobility of five polypeptides using nine different capillary chemistries over the pH range of 3.5-6.5.
    Treat-Clemons LG; Corcoran RB
    J Capillary Electrophor; 1997; 4(3):123-30. PubMed ID: 9484659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration, charge, size, and shape characteristics of peptides from their CZE analyses.
    Peirotti MB; Piaggio MV; Deiber JA
    J Sep Sci; 2008 Feb; 31(3):548-54. PubMed ID: 18266265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks.
    Kahn I; Sild S; Maran U
    J Chem Inf Model; 2007; 47(6):2271-9. PubMed ID: 17985864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.