These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 15825285)

  • 41. [Determination of copper, iron and zinc in tapwater by ion exchange microcolumn preconcentration-derivative flame atomic absorption spectrometry].
    Kang WJ; Ren QY; Ji XP; Sun HW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Dec; 22(6):1037-9. PubMed ID: 12914192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Determination of nickel in artificial cream by flame atomic absorption spectrometry].
    Shen Z; Shen H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):567-8. PubMed ID: 12945297
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry.
    Bianchin JN; Martendal E; Mior R; Alves VN; Araújo CS; Coelho NM; Carasek E
    Talanta; 2009 Apr; 78(2):333-6. PubMed ID: 19203591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of Sulfur Compounds from Coal by the Thermophilic Organism Sulfolobus acidocaldarius.
    Kargi F; Robinson JM
    Appl Environ Microbiol; 1982 Oct; 44(4):878-83. PubMed ID: 16346112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mineralogy and Geochemistry of the M9 High-Sulfur Coal from the Renjiazhuang Mining District, China.
    Wu M; Shen J; Qin Y; Yang L; Song X; Zhu S; Li J
    ACS Omega; 2022 Aug; 7(34):29794-29803. PubMed ID: 36061677
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of sulfur forms in wine including free and total sulfur dioxide based on molecular absorption of carbon monosulfide in the air-acetylene flame.
    Huang MD; Becker-Ross H; Florek S; Heitmann U; Okruss M; Patz CD
    Anal Bioanal Chem; 2008 Jan; 390(1):361-7. PubMed ID: 17972067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination of barium in sulphide ores, concentrates and other geological samples by flame atomic-absorption spectrometry.
    Sharma KD
    Talanta; 1983 Jul; 30(7):493-6. PubMed ID: 18963404
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Detection of Sulfur Dioxide in Preserved Fruits with High Resolution Continuum Source Atomic Absorption Spectrometry Assisted with Distillation].
    Zu WC; Wang Y; Zhang YX; Li BN; Liu C; Ren M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Apr; 36(4):1221-4. PubMed ID: 30052351
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Indirect polarographic microdetermination of sulphur in organic compounds.
    Al-Abachi MQ; Al-Dabbagh FH; Sulaiman ST
    Talanta; 1980 Dec; 27(12):1077-8. PubMed ID: 18962799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced desulfurizing flotation of coal using sonoelectrochemical method.
    Zhang HX; Hou XY; Xu SX; Li ZL; Yu HF; Shen XH
    Ultrason Sonochem; 2013 Sep; 20(5):1176-81. PubMed ID: 23558374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of inorganic plasma sulfate by indirect atomic absorption spectrophotometry.
    Michalk D; Manz F
    Clin Chim Acta; 1980 Oct; 107(1-2):43-8. PubMed ID: 7428177
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of microbial removal of pyritic sulfur from coal using concentrated cell suspension of T. ferrooxidans and an external carbon dioxide supply.
    Kargi F
    Biotechnol Bioeng; 1982 Mar; 24(3):749-52. PubMed ID: 18546362
    [No Abstract]   [Full Text] [Related]  

  • 53. Origins of sulfur in coal: importance of the ester sulfate content of peat.
    Casagrande D; Siefert K
    Science; 1977 Feb; 195(4279):675-6. PubMed ID: 17816416
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Idle time in the washing and iron concentration in leachate removed: two basic parameters in the desulphurization of coal in a packed column.
    Cara J; Aller A; Otero M; Morán A
    Appl Microbiol Biotechnol; 2001 Jan; 55(1):49-54. PubMed ID: 11234958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Indirect atomic-absorption spectrophotometric determination of phosphorus after flotation as the ion-pair of molybdophosphate with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III).
    Taga M; Kan M
    Talanta; 1989 Sep; 36(9):955-6. PubMed ID: 18964840
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Beta radiation self absorption of precipitates collected on filter paper. Studies with S35-barium sulfate.
    GOTTSCHALK RG; HOCH H; STIDWORTHY H
    Clin Chem; 1962; 8():318-32. PubMed ID: 13900775
    [No Abstract]   [Full Text] [Related]  

  • 57. Bacterial Oxidation of Pyritic Materials in Coal.
    Silverman MP; Rogoff MH; Wender I
    Appl Microbiol; 1961 Nov; 9(6):491-6. PubMed ID: 16349610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of Light Microscopy to Direct Coal Liquefaction Research.
    Irdi GA; Warzinski RP; Booher HB
    Microsc Microanal; 1998 Jan; 4(1):50-5. PubMed ID: 9524145
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Volumetric determination of barium, the SO4 ion and organic sulfur by means of the complexon III].
    ALDROVANDI R; DE LORENZI F
    Farmaco Sci Tec; 1951; 6(3):367-71. PubMed ID: 14860233
    [No Abstract]   [Full Text] [Related]  

  • 60. Dissolution of iron sulfates from pyritic coal waste.
    Sullivan PJ; Mattigod SV; Sobek AA
    Environ Sci Technol; 1986 Oct; 20(10):1013-6. PubMed ID: 22257400
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.