BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 15825873)

  • 1. An ultra-low-power programmable analog bionic ear processor.
    Sarpeshkar R; Salthouse C; Sit JJ; Baker MW; Zhak SM; Lu TK; Turicchia L; Balster S
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):711-27. PubMed ID: 15825873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications.
    Chi B; Yao J; Han S; Xie X; Li G; Wang Z
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1291-9. PubMed ID: 17605360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable digital speech processor for cochlear implants using a TMS320C25.
    Dillier N; Senn C; Schlatter T; Stöckli M; Utzinger U
    Acta Otolaryngol Suppl; 1990; 469():120-7. PubMed ID: 2356719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micromechanical resonator array for an implantable bionic ear.
    Bachman M; Zeng FG; Xu T; Li GP
    Audiol Neurootol; 2006; 11(2):95-103. PubMed ID: 16439832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [CILAB--a PC-based laboratory speech processor for implementation and evaluation of new stimulation strategies for cochlear implants].
    Mitterbacher A; Lampacher P; Zierhofer C; Hochmair E
    Biomed Tech (Berl); 2004 Jun; 49(6):146-52. PubMed ID: 15279463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital-signal-processor-based dynamic imaging system for optical tomography.
    Lasker JM; Masciotti JM; Schoenecker M; Schmitz CH; Hielscher AH
    Rev Sci Instrum; 2007 Aug; 78(8):083706. PubMed ID: 17764328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-power asynchronous interleaved sampling algorithm for cochlear implants that encodes envelope and phase information.
    Sit JJ; Simonson AM; Oxenham AJ; Faltys MA; Sarpeshkar R
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):138-49. PubMed ID: 17260865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter.
    Chae MS; Yang Z; Yuce MR; Hoang L; Liu W
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):312-21. PubMed ID: 19435684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithms, hardware, and software for a digital signal processor microcomputer-based speech processor in a multielectrode cochlear implant system.
    Morris LR; Barszczewski P
    IEEE Trans Biomed Eng; 1989 Jun; 36(6):573-84. PubMed ID: 2731944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of speech processing strategies for the design of an ultra low-power analog bionic ear.
    Sawigun C; Ngamkham W; Serdijn WA
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1374-7. PubMed ID: 21096335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultra low-power CMOS automatic action potential detector.
    Gosselin B; Sawan M
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):346-53. PubMed ID: 19366647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design for a simplified cochlear implant system.
    An SK; Park SI; Jun SB; Lee CJ; Byun KM; Sung JH; Wilson BS; Rebscher SJ; Oh SH; Kim SJ
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):973-82. PubMed ID: 17554817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A system-on-chip digital pH meter for use in a wireless diagnostic capsule.
    Hammond PA; Ali D; Cumming DR
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):687-94. PubMed ID: 15825870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A programmable microsystem using system-on-chip for real-time biotelemetry.
    Wang L; Johannessen EA; Hammond PA; Cui L; Reid SW; Cooper JM; Cumming DR
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1251-60. PubMed ID: 16041988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of noise and noise reduction processing on the operation of the Nucleus-22 cochlear implant processor.
    Weiss MR
    J Rehabil Res Dev; 1993; 30(1):117-28. PubMed ID: 8263822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial clinical experience with a totally implantable cochlear implant research device.
    Briggs RJ; Eder HC; Seligman PM; Cowan RS; Plant KL; Dalton J; Money DK; Patrick JF
    Otol Neurotol; 2008 Feb; 29(2):114-9. PubMed ID: 17898671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropower circuits for bidirectional wireless telemetry in neural recording applications.
    Neihart NM; Harrison RR
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording.
    Sodagar AM; Wise KD; Najafi K
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1075-88. PubMed ID: 17554826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A programmable sound processor for advanced hearing aid research.
    McDermott H
    IEEE Trans Rehabil Eng; 1998 Mar; 6(1):53-9. PubMed ID: 9535523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 6 μW per channel analog biomimetic cochlear implant processor filterbank architecture with across channels AGC.
    Yang G; Lyon RF; Drakakis EM
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):72-86. PubMed ID: 25069120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.