BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15826114)

  • 1. Enrichment of single-walled carbon nanotubes by diameter in density gradients.
    Arnold MS; Stupp SI; Hersam MC
    Nano Lett; 2005 Apr; 5(4):713-8. PubMed ID: 15826114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorting carbon nanotubes by electronic structure using density differentiation.
    Arnold MS; Green AA; Hulvat JF; Stupp SI; Hersam MC
    Nat Nanotechnol; 2006 Oct; 1(1):60-5. PubMed ID: 18654143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral-angle distribution for separated single-walled carbon nanotubes.
    Sato Y; Yanagi K; Miyata Y; Suenaga K; Kataura H; Iijima S
    Nano Lett; 2008 Oct; 8(10):3151-4. PubMed ID: 18729412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.
    Samanta SK; Fritsch M; Scherf U; Gomulya W; Bisri SZ; Loi MA
    Acc Chem Res; 2014 Aug; 47(8):2446-56. PubMed ID: 25025887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic-type- and diameter-dependent reduction of single-walled carbon nanotubes induced by adsorption of electron-donor molecules.
    Zhou J; Maeda Y; Lu J; Tashiro A; Hasegawa T; Luo G; Wang L; Lai L; Akasaka T; Nagase S; Gao Z; Qin R; Mei WN; Li G; Yu D
    Small; 2009 Feb; 5(2):244-55. PubMed ID: 19058283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-dependent mitochondrial dysfunction and hypoxia induced with single-walled carbon nanotubes.
    Wang LR; Xue X; Hu XM; Wei MY; Zhang CQ; Ge GL; Liang XJ
    Small; 2014 Jul; 10(14):2859-69. PubMed ID: 24677813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Origami and G-Quadruplex Hybrid Complexes Induce Size Control of Single-Walled Carbon Nanotubes via Biological Activation.
    Atsumi H; Belcher AM
    ACS Nano; 2018 Aug; 12(8):7986-7995. PubMed ID: 30011182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence from inner walls in double-walled carbon nanotubes: some do, some do not.
    Yang S; Parks AN; Saba SA; Ferguson PL; Liu J
    Nano Lett; 2011 Oct; 11(10):4405-10. PubMed ID: 21894950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Strategy for the Investigation on Chirality Selection of Single-Walled Carbon Nanotubes with DNA by Electrochemical Characterization.
    He W; Dai J; Li T; Bao Y; Yang F; Zhang X; Uyama H
    Anal Chem; 2018 Nov; 90(21):12810-12814. PubMed ID: 30298726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile and scalable route for highly efficient enrichment of semiconducting single-walled carbon nanotubes.
    Qiu H; Maeda Y; Akasaka T
    J Am Chem Soc; 2009 Nov; 131(45):16529-33. PubMed ID: 19860464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable and effective enrichment of semiconducting single-walled carbon nanotubes by a dual selective naphthalene-based azo dispersant.
    Sundramoorthy AK; Mesgari S; Wang J; Kumar R; Sk MA; Yeap SH; Zhang Q; Sze SK; Lim KH; Chan-Park MB
    J Am Chem Soc; 2013 Apr; 135(15):5569-81. PubMed ID: 23521315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridization of papain molecules and DNA-wrapped single-walled carbon nanotubes evaluated by atomic force microscopy in fluids.
    Kitamura M; Umemura K
    Sci Rep; 2023 Mar; 13(1):4833. PubMed ID: 36964258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemical behavior of single-walled carbon nanotubes in the presence of propylamine.
    Maeda Y; Hasuike Y; Ohkubo K; Tashiro A; Kaneko S; Kikuta M; Yamada M; Hasegawa T; Akasaka T; Zhou J; Lu J; Nagase S; Fukuzumi S
    Chemphyschem; 2014 Jun; 15(9):1821-6. PubMed ID: 24700613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation.
    Ghosh S; Bachilo SM; Weisman RB
    Nat Nanotechnol; 2010 Jun; 5(6):443-50. PubMed ID: 20453856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong micro-dielectric environment effect on the band gaps of (n,m)single-walled carbon nanotubes.
    Hirana Y; Tanaka Y; Niidome Y; Nakashima N
    J Am Chem Soc; 2010 Sep; 132(37):13072-7. PubMed ID: 20738097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous discrimination of handedness and diameter of single-walled carbon nanotubes (SWNTs) with chiral diporphyrin nanotweezers leading to enrichment of a single enantiomer of (6,5)-SWNTs.
    Wang F; Matsuda K; Rahman AF; Peng X; Kimura T; Komatsu N
    J Am Chem Soc; 2010 Aug; 132(31):10876-81. PubMed ID: 20681721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individualization of single-walled carbon nanotubes: is the solvent important?
    Kim DS; Nepal D; Geckeler KE
    Small; 2005 Nov; 1(11):1117-24. PubMed ID: 17193405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes.
    Zhang L; Tu X; Welsher K; Wang X; Zheng M; Dai H
    J Am Chem Soc; 2009 Feb; 131(7):2454-5. PubMed ID: 19193007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment of (6,5) single wall carbon nanotubes using genomic DNA.
    Kim SN; Kuang Z; Grote JG; Farmer BL; Naik RR
    Nano Lett; 2008 Dec; 8(12):4415-20. PubMed ID: 19053794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.