BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15826145)

  • 1. Unusually short RNA sequences: design of a 13-mer RNA that selectively binds and recognizes theophylline.
    Anderson PC; Mecozzi S
    J Am Chem Soc; 2005 Apr; 127(15):5290-1. PubMed ID: 15826145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods.
    Gouda H; Kuntz ID; Case DA; Kollman PA
    Biopolymers; 2003 Jan; 68(1):16-34. PubMed ID: 12579577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex.
    Jiang F; Kumar RA; Jones RA; Patel DJ
    Nature; 1996 Jul; 382(6587):183-6. PubMed ID: 8700212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimum sequence requirements for selective RNA-ligand binding: a molecular mechanics algorithm using molecular dynamics and free-energy techniques.
    Anderson PC; Mecozzi S
    J Comput Chem; 2006 Nov; 27(14):1631-40. PubMed ID: 16900493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering molecular recognition of RNA aptamers by allosteric selection.
    Soukup GA; Emilsson GA; Breaker RR
    J Mol Biol; 2000 May; 298(4):623-32. PubMed ID: 10788325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA.
    Zimmermann GR; Shields TP; Jenison RD; Wick CL; Pardi A
    Biochemistry; 1998 Jun; 37(25):9186-92. PubMed ID: 9636066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a 14mer RNA that recognizes and binds flavin mononucleotide with high affinity.
    Anderson PC; Mecozzi S
    Nucleic Acids Res; 2005; 33(22):6992-9. PubMed ID: 16377778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of a heterogeneous free state in the formation of a specific RNA-theophylline complex.
    Jucker FM; Phillips RM; McCallum SA; Pardi A
    Biochemistry; 2003 Mar; 42(9):2560-7. PubMed ID: 12614150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of a 2'F-RNA aptamer that binds a HIV-1 SU glycoprotein, gp120.
    Sayer N; Ibrahim J; Turner K; Tahiri-Alaoui A; James W
    Biochem Biophys Res Commun; 2002 May; 293(3):924-31. PubMed ID: 12051747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 1.3 A crystal structure of a biotin-binding pseudoknot and the basis for RNA molecular recognition.
    Nix J; Sussman D; Wilson C
    J Mol Biol; 2000 Mar; 296(5):1235-44. PubMed ID: 10698630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model.
    Hackermüller J; Meisner NC; Auer M; Jaritz M; Stadler PF
    Gene; 2005 Jan; 345(1):3-12. PubMed ID: 15716109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple fluorescent biosensor for theophylline based on its RNA aptamer.
    Rankin CJ; Fuller EN; Hamor KH; Gabarra SA; Shields TP
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(12):1407-24. PubMed ID: 17067962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA molecules that specifically and stoichiometrically bind aminoglycoside antibiotics with high affinities.
    Wang Y; Killian J; Hamasaki K; Rando RR
    Biochemistry; 1996 Sep; 35(38):12338-46. PubMed ID: 8823168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering high-speed allosteric hammerhead ribozymes.
    Link KH; Guo L; Ames TD; Yen L; Mulligan RC; Breaker RR
    Biol Chem; 2007 Aug; 388(8):779-86. PubMed ID: 17655496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo.
    Suess B; Fink B; Berens C; Stentz R; Hillen W
    Nucleic Acids Res; 2004; 32(4):1610-4. PubMed ID: 15004248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality.
    Vaish NK; Larralde R; Fraley AW; Szostak JW; McLaughlin LW
    Biochemistry; 2003 Jul; 42(29):8842-51. PubMed ID: 12873145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient RNA ligation by reverse-joined hairpin ribozymes and engineering of twin ribozymes consisting of conventional and reverse-joined hairpin ribozyme units.
    Ivanov SA; Vauléon S; Müller S
    FEBS J; 2005 Sep; 272(17):4464-74. PubMed ID: 16128815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer.
    Zimmermann GR; Wick CL; Shields TP; Jenison RD; Pardi A
    RNA; 2000 May; 6(5):659-67. PubMed ID: 10836787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant ATP-binding RNA aptamers reveal the structural basis for ligand binding.
    Dieckmann T; Butcher SE; Sassanfar M; Szostak JW; Feigon J
    J Mol Biol; 1997 Oct; 273(2):467-78. PubMed ID: 9344753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel acidophilic RNA motif that recognizes coenzyme A.
    Burke DH; Hoffman DC
    Biochemistry; 1998 Mar; 37(13):4653-63. PubMed ID: 9521786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.