These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 15826160)
1. Rhodopsin reconstituted into a planar-supported lipid bilayer retains photoactivity after cross-linking polymerization of lipid monomers. Subramaniam V; Alves ID; Salgado GF; Lau PW; Wysocki RJ; Salamon Z; Tollin G; Hruby VJ; Brown MF; Saavedra SS J Am Chem Soc; 2005 Apr; 127(15):5320-1. PubMed ID: 15826160 [TBL] [Abstract][Full Text] [Related]
2. Reconstitution of rhodopsin into polymerizable planar supported lipid bilayers: influence of dienoyl monomer structure on photoactivation. Subramaniam V; D'Ambruoso GD; Hall HK; Wysocki RJ; Brown MF; Saavedra SS Langmuir; 2008 Oct; 24(19):11067-75. PubMed ID: 18759470 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of asymmetric planar supported bilayers composed of poly(bis-sorbylphosphatidylcholine) on n-octadecyltrichlorosilane SAMs. Ratnayaka SN; Wysocki RJ; Saavedra SS J Colloid Interface Sci; 2008 Nov; 327(1):63-74. PubMed ID: 18755471 [TBL] [Abstract][Full Text] [Related]
4. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers. Michel R; Subramaniam V; McArthur SL; Bondurant B; D'Ambruoso GD; Hall HK; Brown MF; Ross EE; Saavedra SS; Castner DG Langmuir; 2008 May; 24(9):4901-6. PubMed ID: 18393486 [TBL] [Abstract][Full Text] [Related]
5. Nanomechanical Properties of Artificial Lipid Bilayers Composed of Fluid and Polymerizable Lipids. Fonseka NM; Arce FT; Christie HS; Aspinwall CA; Saavedra SS Langmuir; 2022 Jan; 38(1):100-111. PubMed ID: 34968052 [TBL] [Abstract][Full Text] [Related]
6. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933 [TBL] [Abstract][Full Text] [Related]
7. Photopolymerization of Dienoyl Lipids Creates Planar Supported Poly(lipid) Membranes with Retained Fluidity. Orosz KS; Jones IW; Keogh JP; Smith CM; Griffin KR; Xu J; Comi TJ; Hall HK; Saavedra SS Langmuir; 2016 Feb; 32(6):1577-84. PubMed ID: 26794208 [TBL] [Abstract][Full Text] [Related]
8. Nanodomain Formation in Planar Supported Lipid Bilayers Composed of Fluid and Polymerized Dienoyl Lipids. Fonseka NM; Liang B; Orosz KS; Jones IW; Hall HK; Christie HS; Aspinwall CA; Saavedra SS Langmuir; 2019 Sep; 35(38):12483-12491. PubMed ID: 31454251 [TBL] [Abstract][Full Text] [Related]
9. Label-free detection and identification of protein ligands captured by receptors in a polymerized planar lipid bilayer using MALDI-TOF MS. Liang B; Ju Y; Joubert JR; Kaleta EJ; Lopez R; Jones IW; Hall HK; Ratnayaka SN; Wysocki VH; Saavedra SS Anal Bioanal Chem; 2015 Apr; 407(10):2777-89. PubMed ID: 25694144 [TBL] [Abstract][Full Text] [Related]
10. Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance. Heyse S; Ernst OP; Dienes Z; Hofmann KP; Vogel H Biochemistry; 1998 Jan; 37(2):507-22. PubMed ID: 9425071 [TBL] [Abstract][Full Text] [Related]
11. Functional reconstitution of rhodopsin into tubular lipid bilayers supported by nanoporous media. Soubias O; Polozov IV; Teague WE; Yeliseev AA; Gawrisch K Biochemistry; 2006 Dec; 45(51):15583-90. PubMed ID: 17176079 [TBL] [Abstract][Full Text] [Related]
13. Flow-mediated on-surface reconstitution of G-protein coupled receptors for applications in surface plasmon resonance biosensors. Karlsson OP; Löfås S Anal Biochem; 2002 Jan; 300(2):132-8. PubMed ID: 11779103 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of cross-linked phospholipid bilayer capillary coatings for protein separations. Mansfield E; Ross EE; Aspinwall CA Anal Chem; 2007 Apr; 79(8):3135-41. PubMed ID: 17373774 [TBL] [Abstract][Full Text] [Related]
15. Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids. Heitz BA; Xu J; Jones IW; Keogh JP; Comi TJ; Hall HK; Aspinwall CA; Saavedra SS Langmuir; 2011 Mar; 27(5):1882-90. PubMed ID: 21226498 [TBL] [Abstract][Full Text] [Related]
16. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings. Heitz BA; Jones IW; Hall HK; Aspinwall CA; Saavedra SS J Am Chem Soc; 2010 May; 132(20):7086-93. PubMed ID: 20441163 [TBL] [Abstract][Full Text] [Related]
17. Functional stability of rhodopsin in a bicelle system: evaluating G protein activation by rhodopsin in bicelles. Kaya AI; Iverson TM; Hamm HE Methods Mol Biol; 2015; 1271():67-76. PubMed ID: 25697517 [TBL] [Abstract][Full Text] [Related]
18. Micropatterned composite membranes of polymerized and fluid lipid bilayers. Morigaki K; Kiyosue K; Taguchi T Langmuir; 2004 Aug; 20(18):7729-35. PubMed ID: 15323525 [TBL] [Abstract][Full Text] [Related]
19. Study of G-Protein Coupled Receptor Signaling in Membrane Environment by Plasmon Waveguide Resonance. Alves ID; Lecomte S Acc Chem Res; 2019 Apr; 52(4):1059-1067. PubMed ID: 30865424 [TBL] [Abstract][Full Text] [Related]