These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 15826179)
1. Dependence of transition state structure on substrate: the intrinsic C-13 kinetic isotope effect is different for physiological and slow substrates of the ornithine decarboxylase reaction because of different hydrogen bonding structures. Sicinska D; Truhlar DG; Paneth P J Am Chem Soc; 2005 Apr; 127(15):5414-22. PubMed ID: 15826179 [TBL] [Abstract][Full Text] [Related]
3. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Garcia-Viloca M; Truhlar DG; Gao J Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003 [TBL] [Abstract][Full Text] [Related]
4. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin. Scheuring J; Schramm VL Biochemistry; 1997 Apr; 36(15):4526-34. PubMed ID: 9109661 [TBL] [Abstract][Full Text] [Related]
5. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory. Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038 [TBL] [Abstract][Full Text] [Related]
6. Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase. Devi-Kesavan LS; Gao J J Am Chem Soc; 2003 Feb; 125(6):1532-40. PubMed ID: 12568613 [TBL] [Abstract][Full Text] [Related]
8. Ornithine decarboxylase promotes catalysis by binding the carboxylate in a buried pocket containing phenylalanine 397. Jackson LK; Brooks HB; Myers DP; Phillips MA Biochemistry; 2003 Mar; 42(10):2933-40. PubMed ID: 12627959 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the reaction mechanism for Trypanosoma brucei ornithine decarboxylase by multiwavelength stopped-flow spectroscopy. Brooks HB; Phillips MA Biochemistry; 1997 Dec; 36(49):15147-55. PubMed ID: 9398243 [TBL] [Abstract][Full Text] [Related]
10. Kinetic analysis of the L-ornithine transcarbamoylase from Pseudomonas savastanoi pv. phaseolicola that is resistant to the transition state analogue (R)-N delta-(N'-sulfodiaminophosphinyl)-L-ornithine. Templeton MD; Reinhardt LA; Collyer CA; Mitchell RE; Cleland WW Biochemistry; 2005 Mar; 44(11):4408-15. PubMed ID: 15766270 [TBL] [Abstract][Full Text] [Related]
11. The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations. Wong KY; Gao J Biochemistry; 2007 Nov; 46(46):13352-69. PubMed ID: 17966992 [TBL] [Abstract][Full Text] [Related]
12. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase. Olsson MH; Siegbahn PE; Warshel A J Am Chem Soc; 2004 Mar; 126(9):2820-8. PubMed ID: 14995199 [TBL] [Abstract][Full Text] [Related]
13. A new insight into using chlorine leaving group and nucleophile carbon kinetic isotope effects to determine substituent effects on the structure of SN2 transition states. Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM J Phys Chem A; 2007 Aug; 111(33):8110-20. PubMed ID: 17663535 [TBL] [Abstract][Full Text] [Related]
14. The Y430F mutant of Salmonella d-ornithine/d-lysine decarboxylase has altered stereospecificity and a putrescine allosteric activation site. Phillips RS; Nguyen Hoang KN Arch Biochem Biophys; 2022 Nov; 731():109429. PubMed ID: 36265649 [TBL] [Abstract][Full Text] [Related]
15. The use of isotope effects to determine enzyme mechanisms. Cleland WW Arch Biochem Biophys; 2005 Jan; 433(1):2-12. PubMed ID: 15581561 [TBL] [Abstract][Full Text] [Related]
16. The protein backbone makes important contributions to 4-oxalocrotonate tautomerase enzyme catalysis: understanding from theory and experiment. Cisneros GA; Wang M; Silinski P; Fitzgerald MC; Yang W Biochemistry; 2004 Jun; 43(22):6885-92. PubMed ID: 15170325 [TBL] [Abstract][Full Text] [Related]
17. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex. Rungrotmongkol T; Mulholland AJ; Hannongbua S J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299 [TBL] [Abstract][Full Text] [Related]
18. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes. Gao J; Major DT; Fan Y; Lin YL; Ma S; Wong KY Methods Mol Biol; 2008; 443():37-62. PubMed ID: 18446281 [TBL] [Abstract][Full Text] [Related]
19. Nucleophilic participation in the transition state for human thymidine phosphorylase. Birck MR; Schramm VL J Am Chem Soc; 2004 Mar; 126(8):2447-53. PubMed ID: 14982453 [TBL] [Abstract][Full Text] [Related]
20. Substrate polarization in enzyme catalysis: QM/MM analysis of the effect of oxaloacetate polarization on acetyl-CoA enolization in citrate synthase. van der Kamp MW; Perruccio F; Mulholland AJ Proteins; 2007 Nov; 69(3):521-35. PubMed ID: 17623847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]