BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15826193)

  • 1. Role of conformation and electronic structure in the chemistry of ground and excited state o-pyrazolylphenylnitrenes.
    Carra C; Bally T; Albini A
    J Am Chem Soc; 2005 Apr; 127(15):5552-62. PubMed ID: 15826193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between alpha-cleavage and energy transfer in alpha-azidoacetophenones.
    Muthukrishnan S; Mandel SM; Hackett JC; Singh PN; Hadad CM; Krause JA; Gudmundsdóttir AD
    J Org Chem; 2007 Apr; 72(8):2757-68. PubMed ID: 17373846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triplet pathways in diarylethene photochromism: photophysical and computational study of dyads containing ruthenium(II) polypyridine and 1,2-bis(2-methylbenzothiophene-3-yl)maleimide units.
    Indelli MT; Carli S; Ghirotti M; Chiorboli C; Ravaglia M; Garavelli M; Scandola F
    J Am Chem Soc; 2008 Jun; 130(23):7286-99. PubMed ID: 18479107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the rate of spin-forbidden thermolysis of HN3 and CH3N3.
    Besora M; Harvey JN
    J Chem Phys; 2008 Jul; 129(4):044303. PubMed ID: 18681642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photolysis of alpha-azidoacetophenones: direct detection of triplet alkyl nitrenes in solution.
    Singh PN; Mandel SM; Robinson RM; Zhu Z; Franz R; Ault BS; Gudmundsdóttir AD
    J Org Chem; 2003 Oct; 68(21):7951-60. PubMed ID: 14535770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bonding and structure of copper nitrenes.
    Cundari TR; Dinescu A; Kazi AB
    Inorg Chem; 2008 Nov; 47(21):10067-72. PubMed ID: 18834113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective formation of triplet alkyl nitrenes from photolysis of beta-azido-propiophenone and their reactivity.
    Singh PN; Mandel SM; Sankaranarayanan J; Muthukrishnan S; Chang M; Robinson RM; Lahti PM; Ault BS; Gudmundsdóttir AD
    J Am Chem Soc; 2007 Dec; 129(51):16263-72. PubMed ID: 18034493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved resonance Raman and computational investigation of the influence of 4-acetamido and 4-N-methylacetamido substituents on the chemistry of phenylnitrene.
    Xue J; Vyas S; Du Y; Luk HL; Chuang YP; But TY; Toy PH; Wang J; Winter AH; Phillips DL; Hadad CM; Platz MS
    J Phys Chem A; 2011 Jul; 115(26):7521-30. PubMed ID: 21648388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study.
    Perun S; Tatchen J; Marian CM
    Chemphyschem; 2008 Feb; 9(2):282-92. PubMed ID: 18189251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical insight into the spectroscopy and photochemistry of isoalloxazine, the flavin core ring.
    Climent T; González-Luque R; Merchán M; Serrano-Andrés L
    J Phys Chem A; 2006 Dec; 110(50):13584-90. PubMed ID: 17165886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemistry of ortho, ortho' dialkyl phenyl azides.
    Tsao ML; Platz MS
    J Am Chem Soc; 2003 Oct; 125(39):12014-25. PubMed ID: 14505423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-state dependent radical stabilization in nitrenes: the unusually small singlet-triplet splitting in 2-furanylnitrene.
    Wenthold PG
    J Org Chem; 2012 Jan; 77(1):208-14. PubMed ID: 22059601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposition of anthranil. Single pulse shock-tube experiments, potential energy surfaces and multiwell transition-state calculations. The role of intersystem crossing.
    Lifshitz A; Tamburu C; Suslensky A; Dubnikova F
    J Phys Chem A; 2006 Jul; 110(27):8248-58. PubMed ID: 16821808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excited-state potential energy surface for the photophysics of adenine.
    Blancafort L
    J Am Chem Soc; 2006 Jan; 128(1):210-9. PubMed ID: 16390149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excited states of thiophene: ring opening as deactivation mechanism.
    Salzmann S; Kleinschmidt M; Tatchen J; Weinkauf R; Marian CM
    Phys Chem Chem Phys; 2008 Jan; 10(3):380-92. PubMed ID: 18174980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Singlet-triplet energy splitting and excited states of phenylnitrene.
    Winkler M
    J Phys Chem A; 2008 Sep; 112(37):8649-53. PubMed ID: 18714972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into the substrate-controlled stereochemistry of glycals in one-pot rhodium-catalyzed aziridination and aziridine ring opening.
    Lorpitthaya R; Xie ZZ; Sophy KB; Kuo JL; Liu XW
    Chemistry; 2010 Jan; 16(2):588-94. PubMed ID: 19904775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of acetyl- and methoxycarbonylnitrenes by computational methods and a laser flash photolysis study of benzoylnitrene.
    Liu J; Mandel S; Hadad CM; Platz MS
    J Org Chem; 2004 Dec; 69(25):8583-93. PubMed ID: 15575733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study on the thermal ring opening rearrangement of 1H-bicyclo[3.1.0]hexa-3,5-dien-2-one: a case of two state reactivity.
    González-Navarrete P; Coto PB; Polo V; Andrés J
    Phys Chem Chem Phys; 2009 Sep; 11(33):7189-96. PubMed ID: 19672528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.