These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

857 related articles for article (PubMed ID: 15826317)

  • 21. Optimal approach for classification of acute leukemia subtypes based on gene expression data.
    Cho JH; Lee D; Park JH; Kim K; Lee IB
    Biotechnol Prog; 2002; 18(4):847-54. PubMed ID: 12153320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unimodal transform of variables selected by interval segmentation purity for classification tree modeling of high-dimensional microarray data.
    Du W; Gu T; Tang LJ; Jiang JH; Wu HL; Shen GL; Yu RQ
    Talanta; 2011 Sep; 85(3):1689-94. PubMed ID: 21807240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ensemble gene selection by grouping for microarray data classification.
    Liu H; Liu L; Zhang H
    J Biomed Inform; 2010 Feb; 43(1):81-7. PubMed ID: 19699316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data.
    Tong DL; Schierz AC
    Artif Intell Med; 2011 Sep; 53(1):47-56. PubMed ID: 21775110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring correlations in gene expression microarray data for maximum predictive-minimum redundancy biomarker selection and classification.
    Arevalillo JM; Navarro H
    Comput Biol Med; 2013 Oct; 43(10):1437-43. PubMed ID: 24034735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pattern identification and classification in gene expression data using an autoassociative neural network model.
    Bicciato S; Pandin M; Didonè G; Di Bello C
    Biotechnol Bioeng; 2003 Mar; 81(5):594-606. PubMed ID: 12514809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classifying subtypes of acute lymphoblastic leukemia using silhouette statistics and genetic algorithms.
    Lin TC; Liu RS; Chao YT; Chen SY
    Gene; 2013 Apr; 518(1):159-63. PubMed ID: 23237780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calculation of reliable transcript levels of annotated genes on the basis of multiple probe-sets in Affymetrix microarrays.
    Jaksik R; Polańska J; Herok R; Rzeszowska-Wolny J
    Acta Biochim Pol; 2009; 56(2):271-7. PubMed ID: 19436837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate molecular classification of cancer using simple rules.
    Wang X; Gotoh O
    BMC Med Genomics; 2009 Oct; 2():64. PubMed ID: 19874631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic test bed for feature selection.
    Choudhary A; Brun M; Hua J; Lowey J; Suh E; Dougherty ER
    Bioinformatics; 2006 Apr; 22(7):837-42. PubMed ID: 16428263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mining published lists of cancer related microarray experiments: identification of a gene expression signature having a critical role in cell-cycle control.
    Finocchiaro G; Mancuso F; Muller H
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S14. PubMed ID: 16351740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments.
    Liu H; Tarima S; Borders AS; Getchell TV; Getchell ML; Stromberg AJ
    BMC Bioinformatics; 2005 Apr; 6():106. PubMed ID: 15850479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An entropy-based gene selection method for cancer classification using microarray data.
    Liu X; Krishnan A; Mondry A
    BMC Bioinformatics; 2005 Mar; 6():76. PubMed ID: 15790388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes.
    Jirapech-Umpai T; Aitken S
    BMC Bioinformatics; 2005 Jun; 6():148. PubMed ID: 15958165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Individual sequences in large sets of gene sequences may be distinguished efficiently by combinations of shared sub-sequences.
    Gibbs MJ; Armstrong JS; Gibbs AJ
    BMC Bioinformatics; 2005 Apr; 6():90. PubMed ID: 15817134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation test to assess low-level processing of high-density oligonucleotide microarray data.
    Ploner A; Miller LD; Hall P; Bergh J; Pawitan Y
    BMC Bioinformatics; 2005 Mar; 6():80. PubMed ID: 15799785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Marker identification and classification of cancer types using gene expression data and SIMCA.
    Bicciato S; Luchini A; Di Bello C
    Methods Inf Med; 2004; 43(1):4-8. PubMed ID: 15026826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust biomarker discovery for hepatocellular carcinoma from high-throughput data by multiple feature selection methods.
    Zhang Z; Liu ZP
    BMC Med Genomics; 2021 Aug; 14(Suppl 1):112. PubMed ID: 34433487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robustness of chemometrics-based feature selection methods in early cancer detection and biomarker discovery.
    Lee HW; Lawton C; Na YJ; Yoon S
    Stat Appl Genet Mol Biol; 2013 Mar; 12(2):207-23. PubMed ID: 23502343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chaotic genetic algorithm for gene selection and classification problems.
    Chuang LY; Yang CS; Li JC; Yang CH
    OMICS; 2009 Oct; 13(5):407-20. PubMed ID: 19594377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.