These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15826860)

  • 1. Axonal potassium conductance and glycemic control in human diabetic nerves.
    Misawa S; Kuwabara S; Kanai K; Tamura N; Hiraga A; Nakata M; Ogawara K; Hattori T
    Clin Neurophysiol; 2005 May; 116(5):1181-7. PubMed ID: 15826860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strength-duration properties and glycemic control in human diabetic motor nerves.
    Misawa S; Kuwabara S; Ogawara K; Kitano Y; Hattori T
    Clin Neurophysiol; 2005 Feb; 116(2):254-8. PubMed ID: 15661101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nodal persistent Na+ currents in human diabetic nerves estimated by the technique of latent addition.
    Misawa S; Kuwabara S; Kanai K; Tamura N; Nakata M; Ogawara K; Yagui K; Hattori T
    Clin Neurophysiol; 2006 Apr; 117(4):815-20. PubMed ID: 16495151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of physiological fluctuation of serum potassium levels on excitability properties in healthy human motor axons.
    Kuwabara S; Misawa S; Kanai K; Tamura N; Nakata M; Sawai S; Hattori T
    Clin Neurophysiol; 2007 Feb; 118(2):278-82. PubMed ID: 17141564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperglycemia alters refractory periods in human diabetic neuropathy.
    Misawa S; Kuwabara S; Ogawara K; Kitano Y; Yagui K; Hattori T
    Clin Neurophysiol; 2004 Nov; 115(11):2525-9. PubMed ID: 15465442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo evidence of reduced nodal and paranodal conductances in type 1 diabetes.
    Kwai NCG; Arnold R; Poynten AM; Howells J; Kiernan MC; Lin CS; Krishnan AV
    Clin Neurophysiol; 2016 Feb; 127(2):1700-1706. PubMed ID: 26725257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The acute effects of glycemic control on axonal excitability in human diabetic nerves.
    Kuwabara S; Ogawara K; Harrori T; Suzuki Y; Hashimoto N
    Intern Med; 2002 May; 41(5):360-5. PubMed ID: 12058884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered axonal excitability properties in amyotrophic lateral sclerosis: impaired potassium channel function related to disease stage.
    Kanai K; Kuwabara S; Misawa S; Tamura N; Ogawara K; Nakata M; Sawai S; Hattori T; Bostock H
    Brain; 2006 Apr; 129(Pt 4):953-62. PubMed ID: 16467388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in excitability properties associated with axonal regeneration in human neuropathy and mouse Wallerian degeneration.
    Sawai S; Kanai K; Nakata M; Hiraga A; Misawa S; Isose S; Hattori T; Kuwabara S
    Clin Neurophysiol; 2008 May; 119(5):1097-105. PubMed ID: 18342570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropathic pain is associated with increased nodal persistent Na(+) currents in human diabetic neuropathy.
    Misawa S; Sakurai K; Shibuya K; Isose S; Kanai K; Ogino J; Ishikawa K; Kuwabara S
    J Peripher Nerv Syst; 2009 Dec; 14(4):279-84. PubMed ID: 20021569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered nerve excitability properties in established diabetic neuropathy.
    Krishnan AV; Kiernan MC
    Brain; 2005 May; 128(Pt 5):1178-87. PubMed ID: 15758031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased nodal persistent Na+ currents in human neuropathy and motor neuron disease estimated by latent addition.
    Tamura N; Kuwabara S; Misawa S; Kanai K; Nakata M; Sawai S; Hattori T
    Clin Neurophysiol; 2006 Nov; 117(11):2451-8. PubMed ID: 16996798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acute effects of glycemic control on axonal excitability in human diabetics.
    Kitano Y; Kuwabara S; Misawa S; Ogawara K; Kanai K; Kikkawa Y; Yagui K; Hattori T
    Ann Neurol; 2004 Oct; 56(4):462-7. PubMed ID: 15455400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tibial nerve axonal excitability in type 1 diabetes mellitus.
    Gencpinar P; Çelmeli G; Duman Ö; Haspolat Ş; Uysal H
    Muscle Nerve; 2019 Jan; 59(1):76-81. PubMed ID: 30019351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflections in threshold electrotonus to depolarizing currents in sensory axons.
    Burke D; Howells J; Trevillion L; Kiernan MC; Bostock H
    Muscle Nerve; 2007 Dec; 36(6):849-52. PubMed ID: 17654562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacologic intervention in axonal excitability: in vivo assessment of nodal persistent sodium currents in human neuropathies.
    Kuwabara S; Misawa S
    Curr Mol Pharmacol; 2008 Jan; 1(1):61-7. PubMed ID: 20021424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of age on excitability properties in human motor axons.
    Bae JS; Sawai S; Misawa S; Kanai K; Isose S; Shibuya K; Kuwabara S
    Clin Neurophysiol; 2008 Oct; 119(10):2282-6. PubMed ID: 18760964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitability of human axons.
    Burke D; Kiernan MC; Bostock H
    Clin Neurophysiol; 2001 Sep; 112(9):1575-85. PubMed ID: 11514239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.
    Sung JY; Tani J; Chang TS; Lin CS
    PLoS One; 2017; 12(2):e0171223. PubMed ID: 28182728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of peripheral nerve function in humans: novel insights from motor nerve excitability.
    Farrar MA; Park SB; Lin CS; Kiernan MC
    J Physiol; 2013 Jan; 591(1):273-86. PubMed ID: 23006483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.