These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15826980)

  • 1. Initial ocular following in humans depends critically on the fourier components of the motion stimulus.
    Chen KJ; Sheliga BM; Fitzgibbon EJ; Miles FA
    Ann N Y Acad Sci; 2005 Apr; 1039():260-71. PubMed ID: 15826980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial ocular following in humans: a response to first-order motion energy.
    Sheliga BM; Chen KJ; Fitzgibbon EJ; Miles FA
    Vision Res; 2005 Nov; 45(25-26):3307-21. PubMed ID: 15894346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-latency disparity vergence in humans: evidence for early spatial filtering.
    Sheliga BM; Chen KJ; Fitzgibbon EJ; Miles FA
    Ann N Y Acad Sci; 2005 Apr; 1039():252-9. PubMed ID: 15826979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vergence eye movements induced by radial optic flow: some fundamental properties of the underlying local-motion detectors.
    Kodaka Y; Sheliga BM; FitzGibbon EJ; Miles FA
    Vision Res; 2007 Sep; 47(20):2637-60. PubMed ID: 17706738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The visual motion detectors underlying ocular following responses in monkeys.
    Miura K; Matsuura K; Taki M; Tabata H; Inaba N; Kawano K; Miles FA
    Vision Res; 2006 Mar; 46(6-7):869-78. PubMed ID: 16356529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The initial ocular following responses elicited by apparent-motion stimuli: reversal by inter-stimulus intervals.
    Sheliga BM; Chen KJ; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Mar; 46(6-7):979-92. PubMed ID: 16242168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-latency disparity vergence eye movements: a response to disparity energy.
    Sheliga BM; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Oct; 46(21):3723-40. PubMed ID: 16765403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial summation properties of the human ocular following response (OFR): evidence for nonlinearities due to local and global inhibitory interactions.
    Sheliga BM; Fitzgibbon EJ; Miles FA
    Vision Res; 2008 Aug; 48(17):1758-76. PubMed ID: 18603279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference in perceptual and oculomotor responses revealed by apparent motion stimuli presented with an interstimulus interval.
    Nohara S; Kawano K; Miura K
    J Neurophysiol; 2015 May; 113(9):3219-28. PubMed ID: 25810485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism.
    Sheliga BM; Kodaka Y; FitzGibbon EJ; Miles FA
    Vision Res; 2006 Jun; 46(13):2041-60. PubMed ID: 16487988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feature-tracking model simulates the motion direction bias induced by phase congruency.
    Del Viva MM; Morrone MC
    J Vis; 2006 Mar; 6(3):179-95. PubMed ID: 16643089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human ocular following: evidence that responses to large-field stimuli are limited by local and global inhibitory influences.
    Sheliga BM; FitzGibbon EJ; Miles FA
    Prog Brain Res; 2008; 171():237-43. PubMed ID: 18718307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial summation properties of the human ocular following response (OFR): dependence upon the spatial frequency of the stimulus.
    Sheliga BM; Quaia C; Cumming BG; Fitzgibbon EJ
    Vision Res; 2012 Sep; 68():1-13. PubMed ID: 22819728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy in spatial summation properties of human Ocular-Following Response (OFR).
    Sheliga BM; Quaia C; FitzGibbon EJ; Cumming BG
    Vision Res; 2015 Apr; 109(Pt A):11-9. PubMed ID: 25743079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual motion of missing-fundamental patterns: motion energy versus feature correspondence.
    Brown RO; He S
    Vision Res; 2000; 40(16):2135-47. PubMed ID: 10878275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principal Fourier component of motion stimulus dominates the initial optokinetic response in mice.
    Sugita Y; Miura K; Kawano K
    Neurosci Res; 2012 Jun; 73(2):133-41. PubMed ID: 22465524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrast sensitivity, first-order motion and Initial ocular following in demyelinating optic neuropathy.
    Rucker JC; Sheliga BM; Fitzgibbon EJ; Miles FA; Leigh RJ
    J Neurol; 2006 Sep; 253(9):1203-9. PubMed ID: 16649097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal impulse response function of the visual system estimated from ocular following responses in humans.
    Ohnishi Y; Kawano K; Miura K
    Neurosci Res; 2016 Dec; 113():56-62. PubMed ID: 27527266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal dynamics of 2D motion integration for ocular following in macaque monkeys.
    Barthélemy FV; Fleuriet J; Masson GS
    J Neurophysiol; 2010 Mar; 103(3):1275-82. PubMed ID: 20032230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature matching and segmentation in motion perception.
    Scott-Samuel NE; Georgeson MA
    Proc Biol Sci; 1999 Nov; 266(1435):2289-94. PubMed ID: 10629979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.