These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 15827571)
41. Endomorphin-1 and endomorphin-2 show differences in their activation of mu opioid receptor-regulated G proteins in supraspinal antinociception in mice. Sánchez-Blázquez P; Rodríguez-Díaz M; DeAntonio I; Garzón J J Pharmacol Exp Ther; 1999 Oct; 291(1):12-8. PubMed ID: 10490881 [TBL] [Abstract][Full Text] [Related]
42. Role of mu and delta receptors in the supraspinal and spinal analgesic effects of [D-Pen2, D-Pen5]enkephalin in the mouse. Porreca F; Heyman JS; Mosberg HI; Omnaas JR; Vaught JL J Pharmacol Exp Ther; 1987 May; 241(2):393-400. PubMed ID: 3033214 [TBL] [Abstract][Full Text] [Related]
43. Lack of antinociceptive cross-tolerance between [D-Pen2, D-Pen5]enkephalin and [D-Ala2]deltorphin II in mice: evidence for delta receptor subtypes. Mattia A; Vanderah T; Mosberg HI; Porreca F J Pharmacol Exp Ther; 1991 Aug; 258(2):583-7. PubMed ID: 1650835 [TBL] [Abstract][Full Text] [Related]
44. Heroin acts on different opioid receptors than morphine in Swiss Webster and ICR mice to produce antinociception. Rady JJ; Roerig SC; Fujimoto JM J Pharmacol Exp Ther; 1991 Feb; 256(2):448-57. PubMed ID: 1847196 [TBL] [Abstract][Full Text] [Related]
45. N-acetyl beta-endorphin-(1-31) and substance P regulate the supraspinal antinociception mediated by mu opioid and alpha-2 adrenoceptors but not by delta opioid receptors in the mouse. Sánchez-Blázquez P; Garzón J J Pharmacol Exp Ther; 1993 May; 265(2):835-43. PubMed ID: 7684446 [TBL] [Abstract][Full Text] [Related]
46. Comparison of the antinociceptive effect of acute morphine in female and male Sprague-Dawley rats using the long-lasting mu-antagonist methocinnamox. Peckham EM; Barkley LM; Divin MF; Cicero TJ; Traynor JR Brain Res; 2005 Oct; 1058(1-2):137-47. PubMed ID: 16139823 [TBL] [Abstract][Full Text] [Related]
47. Opioid-induced regulation of gene expression in PC12 cells stably transfected with mu-opioid receptor. Zarnegar P; Persson AI; Ming Y; Terenius L Neurosci Lett; 2006 Apr; 396(3):197-201. PubMed ID: 16377088 [TBL] [Abstract][Full Text] [Related]
48. Antisense oligodeoxynucleotides to opioid mu and delta receptors reduced morphine dependence in mice: role of delta-2 opioid receptors. Sánchez-Blázquez P; García-Espãna A; Garzón J J Pharmacol Exp Ther; 1997 Mar; 280(3):1423-31. PubMed ID: 9067332 [TBL] [Abstract][Full Text] [Related]
49. A Regional and Projection-Specific Role of RGSz1 in the Ventrolateral Periaqueductal Grey in the Modulation of Morphine Reward. Sakloth F; Sanchez-Reyes OB; Ruiz A; Nicolais A; Serafini RA; Pryce KD; Bertherat F; Torres-Berrío A; Gomes I; Devi LA; Wacker D; Zachariou V Mol Pharmacol; 2023 Jan; 103(1):1-8. PubMed ID: 36310031 [TBL] [Abstract][Full Text] [Related]
50. Calcium/calmodulin-dependent protein kinase II supports morphine antinociceptive tolerance by phosphorylation of glycosylated phosducin-like protein. Sánchez-Blázquez P; Rodríguez-Muñoz M; Montero C; de la Torre-Madrid E; Garzón J Neuropharmacology; 2008 Feb; 54(2):319-30. PubMed ID: 18006024 [TBL] [Abstract][Full Text] [Related]
51. Differential control of opioid antinociception to thermal stimuli in a knock-in mouse expressing regulator of G-protein signaling-insensitive Gαo protein. Lamberts JT; Smith CE; Li MH; Ingram SL; Neubig RR; Traynor JR J Neurosci; 2013 Mar; 33(10):4369-77. PubMed ID: 23467353 [TBL] [Abstract][Full Text] [Related]
52. Chronic morphine-induced changes in mu-opioid receptors and G proteins of different subcellular loci in rat brain. Fábián G; Bozó B; Szikszay M; Horváth G; Coscia CJ; Szücs M J Pharmacol Exp Ther; 2002 Aug; 302(2):774-80. PubMed ID: 12130743 [TBL] [Abstract][Full Text] [Related]
53. Endogenous RGS protein action modulates mu-opioid signaling through Galphao. Effects on adenylyl cyclase, extracellular signal-regulated kinases, and intracellular calcium pathways. Clark MJ; Harrison C; Zhong H; Neubig RR; Traynor JR J Biol Chem; 2003 Mar; 278(11):9418-25. PubMed ID: 12524446 [TBL] [Abstract][Full Text] [Related]
54. RGSZ1, a Gz-selective RGS protein in brain. Structure, membrane association, regulation by Galphaz phosphorylation, and relationship to a Gz gtpase-activating protein subfamily. Wang J; Ducret A; Tu Y; Kozasa T; Aebersold R; Ross EM J Biol Chem; 1998 Oct; 273(40):26014-25. PubMed ID: 9748280 [TBL] [Abstract][Full Text] [Related]
55. The effect of the irreversible mu-opioid receptor antagonist clocinnamox on morphine potency, receptor binding and receptor mRNA. Chan K; Brodsky M; Davis T; Franklin S; Inturrisi CE; Yoburn BC Eur J Pharmacol; 1995 Dec; 287(2):135-43. PubMed ID: 8749027 [TBL] [Abstract][Full Text] [Related]
56. Effects of chronic desipramine treatment on alpha2-adrenoceptors and mu-opioid receptors in the guinea pig cortex and hippocampus. Giaroni C; Canciani L; Zanetti E; Giuliani D; Pisani R; Oldrini R; Moro E; Trinchera M; Crema F; Lecchini S; Frigo G Eur J Pharmacol; 2008 Jan; 579(1-3):116-25. PubMed ID: 18028907 [TBL] [Abstract][Full Text] [Related]
57. Glycosylated phosducin-like protein long regulates opioid receptor function in mouse brain. Garzón J; Rodríguez-Díaz M; López-Fando A; García-España A; Sánchez-Blázquez P Neuropharmacology; 2002 May; 42(6):813-28. PubMed ID: 12015208 [TBL] [Abstract][Full Text] [Related]
58. Dissimilar efficacy of opioids to produce mu-mediated analgesia: role of Gx/z and Gi2 transducer proteins. Garzón J; Martínez-Peña Y; Sánchez-Blázquez P Life Sci; 1994; 55(11):PL205-12. PubMed ID: 7915394 [TBL] [Abstract][Full Text] [Related]