BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 15828278)

  • 21. Interplay between DNA N-glycosylases/AP lyases at multiply damaged sites and biological consequences.
    Eot-Houllier G; Gonera M; Gasparutto D; Giustranti C; Sage E
    Nucleic Acids Res; 2007; 35(10):3355-66. PubMed ID: 17468500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repair and mutagenesis at oxidized DNA lesions in the developing brain of wild-type and Ogg1-/- mice.
    Larsen E; Reite K; Nesse G; Gran C; Seeberg E; Klungland A
    Oncogene; 2006 Apr; 25(17):2425-32. PubMed ID: 16369492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in gamma-irradiated human cells.
    Yang N; Chaudhry MA; Wallace SS
    DNA Repair (Amst); 2006 Jan; 5(1):43-51. PubMed ID: 16111924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcription promotes guanine to thymine mutations in the non-transcribed strand of an Escherichia coli gene.
    Klapacz J; Bhagwat AS
    DNA Repair (Amst); 2005 Jul; 4(7):806-13. PubMed ID: 15961353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells.
    Silva JP; Gomes AC; Coutinho OP
    Eur J Pharmacol; 2008 Dec; 601(1-3):50-60. PubMed ID: 18996367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced sensitivity of Neil1
    Calkins MJ; Vartanian V; Owen N; Kirkali G; Jaruga P; Dizdaroglu M; McCullough AK; Lloyd RS
    DNA Repair (Amst); 2016 Dec; 48():43-50. PubMed ID: 27818081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage.
    Kumar N; Raja S; Van Houten B
    Nucleic Acids Res; 2020 Nov; 48(20):11227-11243. PubMed ID: 33010169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Oxidative damage, maintenance, and higher structure of mitochondrial DNA].
    Kang D
    Tanpakushitsu Kakusan Koso; 2005 Apr; 50(4):316-21. PubMed ID: 15828277
    [No Abstract]   [Full Text] [Related]  

  • 29. A distinct TthMutY bifunctional glycosylase that hydrolyzes not only adenine but also thymine opposite 8-oxoguanine in the hyperthermophilic bacterium, Thermus thermophilus.
    Back JH; Park JH; Chung JH; Kim DS; Han YS
    DNA Repair (Amst); 2006 Aug; 5(8):894-903. PubMed ID: 16781198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress.
    Akbari M; Otterlei M; Peña-Diaz J; Krokan HE
    Neuroscience; 2007 Apr; 145(4):1201-12. PubMed ID: 17101234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of MUTYH and MSH2 in the control of oxidative DNA damage, genetic instability, and tumorigenesis.
    Russo MT; De Luca G; Casorelli I; Degan P; Molatore S; Barone F; Mazzei F; Pannellini T; Musiani P; Bignami M
    Cancer Res; 2009 May; 69(10):4372-9. PubMed ID: 19435918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UV-inducible base excision repair of oxidative damaged DNA in human cells.
    Kassam SN; Rainbow AJ
    Mutagenesis; 2009 Jan; 24(1):75-83. PubMed ID: 18836099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Different DNA repair strategies to combat the threat from 8-oxoguanine.
    Russo MT; De Luca G; Degan P; Bignami M
    Mutat Res; 2007 Jan; 614(1-2):69-76. PubMed ID: 16769088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Base-excision repair of oxidative DNA damage by DNA glycosylases.
    Dizdaroglu M
    Mutat Res; 2005 Dec; 591(1-2):45-59. PubMed ID: 16054172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.
    Kaniak A; Dzierzbicki P; Rogowska AT; Malc E; Fikus M; Ciesla Z
    DNA Repair (Amst); 2009 Mar; 8(3):318-29. PubMed ID: 19056520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA damage and repair in gastric cancer--a correlation with the hOGG1 and RAD51 genes polymorphisms.
    Poplawski T; Arabski M; Kozirowska D; Blasinska-Morawiec M; Morawiec Z; Morawiec-Bajda A; Klupińska G; Jeziorski A; Chojnacki J; Blasiak J
    Mutat Res; 2006 Oct; 601(1-2):83-91. PubMed ID: 16843501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of oxidative DNA damage and repair in specific DNA sequences.
    Avrutskaya AV; Leadon SA
    Methods; 2000 Oct; 22(2):127-34. PubMed ID: 11020327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Biological significance of base damage and its repair in brain and neurons].
    Nakabeppu Y
    Tanpakushitsu Kakusan Koso; 2001 Jun; 46(8 Suppl):941-9. PubMed ID: 11436320
    [No Abstract]   [Full Text] [Related]  

  • 39. Base excision repair modulation as a risk factor for human cancers.
    Tudek B
    Mol Aspects Med; 2007; 28(3-4):258-75. PubMed ID: 17628657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protective action of melatonin against oxidative DNA damage: chemical inactivation versus base-excision repair.
    Sliwinski T; Rozej W; Morawiec-Bajda A; Morawiec Z; Reiter R; Blasiak J
    Mutat Res; 2007 Dec; 634(1-2):220-7. PubMed ID: 17851115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.