BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15828428)

  • 21. Morphine effects in brainstem-transected cats: I. EEG and 'sleep-wakefulness' in the isolated forebrain.
    Corpas I; de Andrés I
    Behav Brain Res; 1991 Jul; 44(1):11-9. PubMed ID: 1910566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of opioids on sleep architecture.
    Dimsdale JE; Norman D; DeJardin D; Wallace MS
    J Clin Sleep Med; 2007 Feb; 3(1):33-6. PubMed ID: 17557450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphine sex-dependently induced place conditioning in adult Wistar rats.
    Karami M; Zarrindast MR
    Eur J Pharmacol; 2008 Mar; 582(1-3):78-87. PubMed ID: 18191832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EEG and behavioral effects of morphine in dogs.
    Novack GD; Winters WD; Nakamura J
    Proc West Pharmacol Soc; 1976; 19():239-42. PubMed ID: 186809
    [No Abstract]   [Full Text] [Related]  

  • 25. Effects of morphine on rat behaviour in the elevated plus maze: the role of central amygdala dopamine receptors.
    Rezayof A; Hosseini SS; Zarrindast MR
    Behav Brain Res; 2009 Sep; 202(2):171-8. PubMed ID: 19463698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of selective dopamine D4 receptor antagonist, L-741,741, on sleep and wakefulness in the rat.
    Cavas M; Navarro JF
    Prog Neuropsychopharmacol Biol Psychiatry; 2006 Jun; 30(4):668-78. PubMed ID: 16457926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison between spontaneous electroencephalographic activities induced by morphine and morphine-related environment in rats.
    Zuo YF; Wang JY; Chen JH; Qiao ZM; Han JS; Cui CL; Luo F
    Brain Res; 2007 Mar; 1136(1):88-101. PubMed ID: 17234161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Handedness leads to interhemispheric EEG asymmetry during sleep in the rat.
    Vyazovskiy VV; Tobler I
    J Neurophysiol; 2008 Feb; 99(2):969-75. PubMed ID: 18077659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuropeptide Y Y1 receptors mediate morphine-induced reductions of natural killer cell activity.
    Saurer TB; Ijames SG; Lysle DT
    J Neuroimmunol; 2006 Aug; 177(1-2):18-26. PubMed ID: 16766046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Melatonin reverses the expression of morphine-induced conditioned place preference through its receptors within central nervous system in mice.
    Han J; Xu Y; Yu CX; Shen J; Wei YM
    Eur J Pharmacol; 2008 Oct; 594(1-3):125-31. PubMed ID: 18706407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic morphine exposure during puberty induces long-lasting changes in opioid-related mRNA expression in the mediobasal hypothalamus.
    Byrnes EM
    Brain Res; 2008 Jan; 1190():186-92. PubMed ID: 18083149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Central nervous system effects of the novel antiallergic agent HSR-609 and typical antiallergic agents using behavioral and electroencephalographic analyses in dogs.
    Kakiuchi M; Ohashi T; Tanaka K; Ohara N; Kamiyama K; Morikawa K; Kato H
    Nihon Shinkei Seishin Yakurigaku Zasshi; 1998 Oct; 18(5):189-99. PubMed ID: 10028490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Opioid system of the brain and ethanol.
    Gogichadze M; Mgaloblishvili-Nemsadze M; Oniani N; Emukhvary N; Basishvili T
    Georgian Med News; 2009 Apr; (169):60-5. PubMed ID: 19430047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphine self-administration into the lateral septum depends on dopaminergic mechanisms: Evidence from pharmacology and Fos neuroimaging.
    Le Merrer J; Gavello-Baudy S; Galey D; Cazala P
    Behav Brain Res; 2007 Jun; 180(2):203-17. PubMed ID: 17467070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracerebroventricular effects of histaminergic agents on morphine-induced anxiolysis in the elevated plus-maze in rats.
    Zarrindast MR; Rostami P; Zarei M; Roohbakhsh A
    Basic Clin Pharmacol Toxicol; 2005 Nov; 97(5):276-81. PubMed ID: 16236138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The involvement of dopamine in the modulation of sleep and waking.
    Monti JM; Monti D
    Sleep Med Rev; 2007 Apr; 11(2):113-33. PubMed ID: 17275369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sleep research in space: expression of immediate early genes in forebrain structures of rats during the nasa neurolab mission (STS-90).
    Centini C; Pompeiano O
    Arch Ital Biol; 2007 May; 145(2):117-50. PubMed ID: 17639784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reflection of tolerance to alcohol in the structure of the sleep wakefulness cycle.
    Gogichadze M; Nemsadze M; Lortkipanidze N; Khachaturovy E; Oniani N
    Georgian Med News; 2014 Oct; (235):87-92. PubMed ID: 25416225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders.
    Parmentier R; Anaclet C; Guhennec C; Brousseau E; Bricout D; Giboulot T; Bozyczko-Coyne D; Spiegel K; Ohtsu H; Williams M; Lin JS
    Biochem Pharmacol; 2007 Apr; 73(8):1157-71. PubMed ID: 17288995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opioid-related side-effects after intrathecal morphine: a prospective, randomized, double-blind dose-response study.
    Raffaeli W; Marconi G; Fanelli G; Taddei S; Borghi GB; Casati A
    Eur J Anaesthesiol; 2006 Jul; 23(7):605-10. PubMed ID: 16507190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.