BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

893 related articles for article (PubMed ID: 15828779)

  • 1. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Apr; 77(8):2437-49. PubMed ID: 15828779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiolytic modification of basic amino acid residues in peptides: probes for examining protein-protein interactions.
    Xu G; Takamoto K; Chance MR
    Anal Chem; 2003 Dec; 75(24):6995-7007. PubMed ID: 14670063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary reactions and strategies to improve quantitative protein footprinting.
    Xu G; Kiselar J; He Q; Chance MR
    Anal Chem; 2005 May; 77(10):3029-37. PubMed ID: 15889890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiolytic modification of acidic amino acid residues in peptides: probes for examining protein-protein interactions.
    Xu G; Chance MR
    Anal Chem; 2004 Mar; 76(5):1213-21. PubMed ID: 14987073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Jul; 77(14):4549-55. PubMed ID: 16013872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry.
    Maleknia SD; Brenowitz M; Chance MR
    Anal Chem; 1999 Sep; 71(18):3965-73. PubMed ID: 10500483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved sequencing of oxidized cysteine and methionine containing peptides using electron transfer dissociation.
    Srikanth R; Wilson J; Bridgewater JD; Numbers JR; Lim J; Olbris MR; Kettani A; Vachet RW
    J Am Soc Mass Spectrom; 2007 Aug; 18(8):1499-506. PubMed ID: 17583533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of copper in cysteine oxidation: study of intra- and inter-molecular reactions in mass spectrometry.
    Prudent M; Girault HH
    Metallomics; 2009 Mar; 1(2):157-65. PubMed ID: 21305109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic study of cysteine, cystine, homocysteine, penicillamine, methionine and methionine sulfoxide.
    Risberg ED; Jalilehvand F; Leung BO; Pettersson LG; Sandström M
    Dalton Trans; 2009 May; (18):3542-58. PubMed ID: 19381417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyl radical probe of the surface of lysozyme by synchrotron radiolysis and mass spectrometry.
    Maleknia SD; Kiselar JG; Downard KM
    Rapid Commun Mass Spectrom; 2002; 16(1):53-61. PubMed ID: 11754247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide cysteine thiyl radicals abstract hydrogen atoms from surrounding amino acids: the photolysis of a cystine containing model peptide.
    Mozziconacci O; Sharov V; Williams TD; Kerwin BA; Schöneich C
    J Phys Chem B; 2008 Jul; 112(30):9250-7. PubMed ID: 18611046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress.
    Fedorova M; Kuleva N; Hoffmann R
    J Proteome Res; 2010 Mar; 9(3):1598-609. PubMed ID: 20063901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin and control of ex vivo oxidative peptide modifications prior to mass spectrometry analysis.
    Froelich JM; Reid GE
    Proteomics; 2008 Apr; 8(7):1334-45. PubMed ID: 18306178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin.
    Zabel R; Weber G
    Anal Bioanal Chem; 2016 Feb; 408(4):1237-47. PubMed ID: 26670772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry.
    Kiselar JG; Maleknia SD; Sullivan M; Downard KM; Chance MR
    Int J Radiat Biol; 2002 Feb; 78(2):101-14. PubMed ID: 11779360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel oxidative modifications in redox-active cysteine residues.
    Jeong J; Jung Y; Na S; Jeong J; Lee E; Kim MS; Choi S; Shin DH; Paek E; Lee HY; Lee KJ
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.000513. PubMed ID: 21148632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution mass spectrometry characterization of the oxidation pattern of methionine and cysteine residues in rat liver mitochondria voltage-dependent anion selective channel 3 (VDAC3).
    Saletti R; Reina S; Pittalà MG; Belfiore R; Cunsolo V; Messina A; De Pinto V; Foti S
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):301-311. PubMed ID: 27989743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-plate deposition of oxidized proteins to facilitate protein footprinting studies by radical probe mass spectrometry.
    Maleknia SD; Downard KM
    Rapid Commun Mass Spectrom; 2012 Oct; 26(19):2311-8. PubMed ID: 22956323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications.
    Powell T; Bowra S; Cooper HJ
    J Am Soc Mass Spectrom; 2017 Sep; 28(9):1775-1786. PubMed ID: 28516297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.