BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15828794)

  • 1. Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy.
    Singh GP; Creely CM; Volpe G; Grötsch H; Petrov D
    Anal Chem; 2005 Apr; 77(8):2564-8. PubMed ID: 15828794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study of Raman spectroscopy of optically trapped human red blood cell affected by direct current].
    Yue L; Wang G; Fang L; Yao H; Yuan Z; Mo H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):404-8. PubMed ID: 17591270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress.
    Modig T; Granath K; Adler L; Lidén G
    Appl Microbiol Biotechnol; 2007 May; 75(2):289-96. PubMed ID: 17221190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time detection of changes in the electrophoretic mobility of a single cell induced by hyperosmotic stress.
    Mestres P; Petrov D
    Eur Biophys J; 2011 Sep; 40(9):1081-5. PubMed ID: 21710302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells.
    Ramser K; Enger J; Goksör M; Hanstorp D; Logg K; Käll M
    Lab Chip; 2005 Apr; 5(4):431-6. PubMed ID: 15791341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential role of microenvironment in microencapsulation for improved cell tolerance to stress.
    Sun ZJ; Lv GJ; Li SY; Yu WT; Wang W; Xie YB; Ma X
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1419-27. PubMed ID: 17457545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time detection of single-living pancreatic beta-cell by laser tweezers Raman spectroscopy: high glucose stimulation.
    Rong X; Huang SS; Kuang XC; Liu H
    Biopolymers; 2010 Jul; 93(7):587-94. PubMed ID: 20091674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing oxidative stress in single erythrocytes with Raman Tweezers.
    Zachariah E; Bankapur A; Santhosh C; Valiathan M; Mathur D
    J Photochem Photobiol B; 2010 Sep; 100(3):113-6. PubMed ID: 20561796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman tweezers and their application to the study of singly trapped eukaryotic cells.
    Snook RD; Harvey TJ; Correia Faria E; Gardner P
    Integr Biol (Camb); 2009 Jan; 1(1):43-52. PubMed ID: 20023790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Raman tweezers by phase-sensitive detection.
    Rusciano G; De Luca AC; Sasso A; Pesce G
    Anal Chem; 2007 May; 79(10):3708-15. PubMed ID: 17444615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel analysis of individual biological cells using multifocal laser tweezers Raman spectroscopy.
    Liu R; Taylor DS; Matthews DL; Chan JW
    Appl Spectrosc; 2010 Nov; 64(11):1308-10. PubMed ID: 21073802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of yeast glutathione reductase by trehalose: possible implications in yeast survival and recovery from stress.
    Sebollela A; Louzada PR; Sola-Penna M; Sarone-Williams V; Coelho-Sampaio T; Ferreira ST
    Int J Biochem Cell Biol; 2004 May; 36(5):900-8. PubMed ID: 15006642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of the recombinant proteins in single transgenic microbial cell using laser tweezers and Raman spectroscopy.
    Xie C; Nguyen N; Zhu Y; Li YQ
    Anal Chem; 2007 Dec; 79(24):9269-75. PubMed ID: 18020311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode.
    Dasgupta R; Ahlawat S; Verma RS; Gupta PK
    Opt Express; 2011 Apr; 19(8):7680-8. PubMed ID: 21503077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of glutamate in optically trapped single nerve terminals by Raman spectroscopy.
    Ajito K; Han C; Torimitsu K
    Anal Chem; 2004 May; 76(9):2506-10. PubMed ID: 15117190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.
    Nisamedtinov I; Lindsey GG; Karreman R; Orumets K; Koplimaa M; Kevvai K; Paalme T
    FEMS Yeast Res; 2008 Sep; 8(6):829-38. PubMed ID: 18625028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress.
    Claro FB; Rijsbrack K; Soares EV
    J Appl Microbiol; 2007 Mar; 102(3):693-700. PubMed ID: 17309618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Laser tweezers Raman spectroscopy analysis of liver cancer tissue].
    Wang YJ; Yao HL; Wang GW; Wang Y; Feng MF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1881-3. PubMed ID: 19798963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell integrity signaling activation in response to hyperosmotic shock in yeast.
    García-Rodríguez LJ; Valle R; Durán A; Roncero C
    FEBS Lett; 2005 Nov; 579(27):6186-90. PubMed ID: 16243316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning.
    Eriksson E; Sott K; Lundqvist F; Sveningsson M; Scrimgeour J; Hanstorp D; Goksör M; Granéli A
    Lab Chip; 2010 Mar; 10(5):617-25. PubMed ID: 20162237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.