These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 15828802)
1. 5-Hydroxytryptophan as a precursor of a catalyst for the oxidation of NADH. de-los-Santos-Alvarez N; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P; Abruña HD Anal Chem; 2005 Apr; 77(8):2624-31. PubMed ID: 15828802 [TBL] [Abstract][Full Text] [Related]
2. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes. Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793 [TBL] [Abstract][Full Text] [Related]
3. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes. Zhu L; Zhai J; Yang R; Tian C; Guo L Biosens Bioelectron; 2007 May; 22(11):2768-73. PubMed ID: 17267199 [TBL] [Abstract][Full Text] [Related]
4. Carbon nanotubes-polymer-redox mediator hybrid thin film for electrocatalytic sensing. Raj CR; Chakraborty S Biosens Bioelectron; 2006 Dec; 22(5):700-6. PubMed ID: 16584882 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical investigations of the reaction mechanism and kinetics between NADH and redox-active (NC)2C6H3-NHOH/(NC)2C6H3-NO from 4-nitrophthalonitrile-(NC)2C6H3-NO2-modified electrode. Lima PR; Santos Wde J; de Oliveira AB; Goulart MO; Kubota LT Biosens Bioelectron; 2008 Nov; 24(3):448-54. PubMed ID: 18562191 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity. Salimi A; Hallaj R; Soltanian S Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977 [TBL] [Abstract][Full Text] [Related]
7. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing. Teymourian H; Salimi A; Hallaj R Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121 [TBL] [Abstract][Full Text] [Related]
9. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I). Zu Y; Shannon RJ; Hirst J J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of Meldola's blue/zinc oxide hybrid electrodes for efficient detection of the reduced form of nicotinamide adenine dinucleotide at low potential. Kumar SA; Chen SM Anal Chim Acta; 2007 May; 592(1):36-44. PubMed ID: 17499068 [TBL] [Abstract][Full Text] [Related]
11. Electrocatalytic oxidation of dihydronicotineamide adenine dinucleotide on gold electrode modified with catechol-terminated alkanethiol self-assembly. Nakano K; Ohkubo K; Taira H; Takagi M; Imato T Anal Chim Acta; 2008 Jun; 619(1):30-6. PubMed ID: 18539170 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Salimi A; Sharifi E; Noorbakhsh A; Soltanian S Biosens Bioelectron; 2007 Jun; 22(12):3146-53. PubMed ID: 17368016 [TBL] [Abstract][Full Text] [Related]
13. Electrocatalytic activity of cobalt phthalocyanine CoPc adsorbed on a graphite electrode for the oxidation of reduced L-glutathione (GSH) and the reduction of its disulfide (GSSG) at physiological pH. Pereira-Rodrigues N; Cofré R; Zagal JH; Bedioui F Bioelectrochemistry; 2007 Jan; 70(1):147-54. PubMed ID: 16723282 [TBL] [Abstract][Full Text] [Related]
14. Mediatorless voltammetric oxidation of NADH and sensing of ethanol. Raj CR; Behera S Biosens Bioelectron; 2005 Dec; 21(6):949-56. PubMed ID: 16257664 [TBL] [Abstract][Full Text] [Related]
15. Electrocatalytic oxidation of NADH using a pencil graphite electrode modified with quercetin. Dilgin Y; Kızılkaya B; Dilgin DG; Gökçel Hİ; Gorton L Colloids Surf B Biointerfaces; 2013 Feb; 102():816-21. PubMed ID: 23107961 [TBL] [Abstract][Full Text] [Related]
16. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472 [TBL] [Abstract][Full Text] [Related]
17. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH. Kang HS; Na BK; Park DH Biotechnol Lett; 2007 Aug; 29(8):1277-80. PubMed ID: 17549436 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of anion transfer across the liquid | liquid interface of a thin organic film modified electrode, studied by means of square-wave voltammetry. Quentel F; Mirceski V; L'Her M Anal Chem; 2005 Apr; 77(7):1940-9. PubMed ID: 15801722 [TBL] [Abstract][Full Text] [Related]
19. Measurement of the kinetic isotope effect for the oxidation of NADH at a poly(aniline)-modified electrode. Bartlett PN; Simon E J Am Chem Soc; 2003 Apr; 125(14):4014-5. PubMed ID: 12670199 [TBL] [Abstract][Full Text] [Related]
20. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Banks CE; Compton RG Analyst; 2005 Sep; 130(9):1232-9. PubMed ID: 16096667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]