These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 15828802)
41. A comparison between the use of a redox mediator in solution and of surface modified electrodes in the electrocatalytic oxidation of nicotinamide adenine dinucleotide. Antiochia R; Lavagnini I; Pastore P; Magno F Bioelectrochemistry; 2004 Sep; 64(2):157-63. PubMed ID: 15296789 [TBL] [Abstract][Full Text] [Related]
42. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Shan C; Yang H; Han D; Zhang Q; Ivaska A; Niu L Biosens Bioelectron; 2010 Feb; 25(6):1504-8. PubMed ID: 20007014 [TBL] [Abstract][Full Text] [Related]
43. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate. Salimi A; Kavosi B; Babaei A; Hallaj R Anal Chim Acta; 2008 Jun; 618(1):43-53. PubMed ID: 18501244 [TBL] [Abstract][Full Text] [Related]
44. Differential pulse voltammetric simultaneous determination of noradrenalin and acetaminophen using a hematoxylin biosensor. Nasirizadeh N; Zare HR Talanta; 2009 Dec; 80(2):656-63. PubMed ID: 19836534 [TBL] [Abstract][Full Text] [Related]
45. Ionic-complementary peptide-modified highly ordered pyrolytic graphite electrode for biosensor application. Yang H; Fung SY; Sun W; Mikkelsen S; Pritzker M; Chen P Biotechnol Prog; 2008; 24(4):964-71. PubMed ID: 19194905 [TBL] [Abstract][Full Text] [Related]
46. Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode. Meng L; Wu P; Chen G; Cai C; Sun Y; Yuan Z Biosens Bioelectron; 2009 Feb; 24(6):1751-6. PubMed ID: 18945610 [TBL] [Abstract][Full Text] [Related]
47. Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of a redox mediator in solution and dissolved in the paste. Antiochia R; Lavagnini I; Magno F Anal Bioanal Chem; 2005 Apr; 381(7):1355-61. PubMed ID: 15761736 [TBL] [Abstract][Full Text] [Related]
48. Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite-wax composite electrode. Jayasri D; Narayanan SS J Hazard Mater; 2007 Jun; 144(1-2):348-54. PubMed ID: 17118545 [TBL] [Abstract][Full Text] [Related]
49. Direct mediatorless electron transport between the monolayer of photosystem II and poly(mercapto-p-benzoquinone) modified gold electrode--new design of biosensor for herbicide detection. Maly J; Masojidek J; Masci A; Ilie M; Cianci E; Foglietti V; Vastarella W; Pilloton R Biosens Bioelectron; 2005 Dec; 21(6):923-32. PubMed ID: 16257662 [TBL] [Abstract][Full Text] [Related]
50. Electropolymerized flavin adenine dinucleotide as an advanced NADH transducer. Karyakin AA; Ivanova YN; Revunova KV; Karyakina EE Anal Chem; 2004 Apr; 76(7):2004-9. PubMed ID: 15053664 [TBL] [Abstract][Full Text] [Related]
51. Electrocatalytic reduction of S-nitrosoglutathione at electrodes modified with an electropolymerized film of a pyrrole-derived viologen system and their application to cellular S-nitrosoglutathione determinations. Wu Q; Storrier GD; Wu KR; Shapleigh JP; Abruña HD Anal Biochem; 1998 Oct; 263(1):102-12. PubMed ID: 9750150 [TBL] [Abstract][Full Text] [Related]
52. Direct electrochemistry of the flavin domain of assimilatory nitrate reductase: effects of NAD+ and NAD+ analogs. Barber MJ; Trimboli AJ; Nomikos S; Smith ET Arch Biochem Biophys; 1997 Sep; 345(1):88-96. PubMed ID: 9281315 [TBL] [Abstract][Full Text] [Related]
53. 6-Vinyl coenzyme Q0: Electropolymerization and electrocatalysis of NADH oxidation exploiting poly-p-quinone-modified electrode surfaces. Li Y; Shi L; Ma W; Li DW; Kraatz HB; Long YT Bioelectrochemistry; 2011 Feb; 80(2):128-31. PubMed ID: 20678972 [TBL] [Abstract][Full Text] [Related]
54. Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Vaz-Dominguez C; Campuzano S; Rüdiger O; Pita M; Gorbacheva M; Shleev S; Fernandez VM; De Lacey AL Biosens Bioelectron; 2008 Dec; 24(4):531-7. PubMed ID: 18585029 [TBL] [Abstract][Full Text] [Related]
55. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Wu L; Zhang X; Ju H Anal Chem; 2007 Jan; 79(2):453-8. PubMed ID: 17222007 [TBL] [Abstract][Full Text] [Related]
56. Electrochemical behaviors of guanosine on carbon ionic liquid electrode and its determination. Sun W; Duan Y; Li Y; Gao H; Jiao K Talanta; 2009 May; 78(3):695-9. PubMed ID: 19269414 [TBL] [Abstract][Full Text] [Related]
57. Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2. Chakraborty S; Raj CR Biosens Bioelectron; 2009 Jul; 24(11):3264-8. PubMed ID: 19442506 [TBL] [Abstract][Full Text] [Related]
58. Catechol sensor using poly(aniline-co-o-aminophenol) as an electron transfer mediator. Mu S Biosens Bioelectron; 2006 Jan; 21(7):1237-43. PubMed ID: 15978798 [TBL] [Abstract][Full Text] [Related]
59. Polymer modified electrodes for the reversible oxidation-reduction of NAD+/NADH for use within amperometric biosensors. Warrington RJ; Higson SP Biomed Sci Instrum; 2001; 37():75-80. PubMed ID: 11347449 [TBL] [Abstract][Full Text] [Related]
60. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida. Tasca F; Gorton L; Harreither W; Haltrich D; Ludwig R; Nöll G Anal Chem; 2009 Apr; 81(7):2791-8. PubMed ID: 19256522 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]