These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15829352)

  • 1. Prediction of the mutation-induced change in thermodynamic stabilities of membrane proteins from free energy simulations.
    Park H; Lee S
    Biophys Chem; 2005 Apr; 114(2-3):191-7. PubMed ID: 15829352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the amino acid sequence in domain swapping of the B1 domain of protein G.
    Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ
    Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single disulfide bond restores thermodynamic and proteolytic stability to an extensively mutated protein.
    Roesler KR; Rao AG
    Protein Sci; 2000 Sep; 9(9):1642-50. PubMed ID: 11045611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free energy calculations applied to membrane proteins.
    Chipot C
    Methods Mol Biol; 2008; 443():121-44. PubMed ID: 18446285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic cluster analysis and modeling of the human Rh protein three-dimensional structures.
    Callebaut I; Dulin F; Bertrand O; Ripoche P; Mouro I; Colin Y; Mornon JP; Cartron JP
    Transfus Clin Biol; 2006; 13(1-2):70-84. PubMed ID: 16584906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic effects of proline introduction on protein stability.
    Prajapati RS; Das M; Sreeramulu S; Sirajuddin M; Srinivasan S; Krishnamurthy V; Ranjani R; Ramakrishnan C; Varadarajan R
    Proteins; 2007 Feb; 66(2):480-91. PubMed ID: 17034035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural stability of wild type and mutated alpha-keratin fragments: molecular dynamics and free energy calculations.
    Danciulescu C; Nick B; Wortmann FJ
    Biomacromolecules; 2004; 5(6):2165-75. PubMed ID: 15530030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the effect of a point mutation on a protein fold: the villin and advillin headpieces and their Pro62Ala mutants.
    Piana S; Laio A; Marinelli F; Van Troys M; Bourry D; Ampe C; Martins JC
    J Mol Biol; 2008 Jan; 375(2):460-70. PubMed ID: 18022635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterization and crystal structure of a Dim1 family associated protein: Dim2.
    Simeoni F; Arvai A; Bello P; Gondeau C; Hopfner KP; Neyroz P; Heitz F; Tainer J; Divita G
    Biochemistry; 2005 Sep; 44(36):11997-2008. PubMed ID: 16142897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native protein sequences are designed to destabilize folding intermediates.
    Isogai Y
    Biochemistry; 2006 Feb; 45(8):2488-92. PubMed ID: 16489741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional properties of soybean nodulin 26 from a comparative three-dimensional model.
    Biswas S
    FEBS Lett; 2004 Jan; 558(1-3):39-44. PubMed ID: 14759513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy landscapes of a highly structured beta-hairpin peptide and its single mutant.
    Kim E; Yang C; Jang S; Pak Y
    J Chem Phys; 2008 Oct; 129(16):165104. PubMed ID: 19045319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
    Bosshard HR; Marti DN; Jelesarov I
    J Mol Recognit; 2004; 17(1):1-16. PubMed ID: 14872533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site specific point mutation changes specificity: a molecular modeling study by free energy simulations and enzyme kinetics of the thermodynamics in ribonuclease T1 substrate interactions.
    Elofsson A; Kulinski T; Rigler R; Nilsson L
    Proteins; 1993 Oct; 17(2):161-75. PubMed ID: 8265564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the translocon-mediated membrane insertion free energies of protein sequences.
    Park Y; Helms V
    Bioinformatics; 2008 May; 24(10):1271-7. PubMed ID: 18388143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modeling and molecular dynamics simulations of membrane transporter proteins.
    Dwyer DS
    Methods Mol Biol; 2003; 227():335-50. PubMed ID: 12824657
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.