These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15829707)

  • 21. ClC-5: role in endocytosis in the proximal tubule.
    Wang Y; Cai H; Cebotaru L; Hryciw DH; Weinman EJ; Donowitz M; Guggino SE; Guggino WB
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F850-62. PubMed ID: 15942052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo role of CLC chloride channels in the kidney.
    Uchida S
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F802-8. PubMed ID: 11053039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovery of CLC transport proteins: cloning, structure, function and pathophysiology.
    Jentsch TJ
    J Physiol; 2015 Sep; 593(18):4091-109. PubMed ID: 25590607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adenosine inhibits the basolateral Cl
    Zaika O; Tomilin VN; Pochynyuk O
    Am J Physiol Renal Physiol; 2020 Apr; 318(4):F870-F877. PubMed ID: 31984792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kidney-specific upregulation of vitamin D3 target genes in ClC-5 KO mice.
    Maritzen T; Rickheit G; Schmitt A; Jentsch TJ
    Kidney Int; 2006 Jul; 70(1):79-87. PubMed ID: 16672909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells.
    Günther W; Lüchow A; Cluzeaud F; Vandewalle A; Jentsch TJ
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):8075-80. PubMed ID: 9653142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes.
    Zifarelli G
    J Physiol; 2015 Sep; 593(18):4139-50. PubMed ID: 26036722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An internalization signal in ClC-5, an endosomal Cl-channel mutated in dent's disease.
    Schwake M; Friedrich T; Jentsch TJ
    J Biol Chem; 2001 Apr; 276(15):12049-54. PubMed ID: 11116157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological importance of endosomal acidification: potential role in proximal tubulopathies.
    Marshansky V; Ausiello DA; Brown D
    Curr Opin Nephrol Hypertens; 2002 Sep; 11(5):527-37. PubMed ID: 12187318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional characterization of a novel missense CLCN5 mutation causing alterations in proximal tubular endocytic machinery in Dent's disease.
    Tanuma A; Sato H; Takeda T; Hosojima M; Obayashi H; Hama H; Iino N; Hosaka K; Kaseda R; Imai N; Ueno M; Yamazaki M; Sakimura K; Gejyo F; Saito A
    Nephron Physiol; 2007; 107(4):p87-97. PubMed ID: 18025833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of ClC-5 in renal endocytosis is unique among ClC exchangers and does not require PY-motif-dependent ubiquitylation.
    Rickheit G; Wartosch L; Schaffer S; Stobrawa SM; Novarino G; Weinert S; Jentsch TJ
    J Biol Chem; 2010 Jun; 285(23):17595-603. PubMed ID: 20351103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decreased renal accumulation of aminoglycoside reflects defective receptor-mediated endocytosis in cystic fibrosis and Dent's disease.
    Raggi C; Fujiwara K; Leal T; Jouret F; Devuyst O; Terryn S
    Pflugers Arch; 2011 Dec; 462(6):851-60. PubMed ID: 21927812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4.
    Boettger T; Hübner CA; Maier H; Rust MB; Beck FX; Jentsch TJ
    Nature; 2002 Apr; 416(6883):874-8. PubMed ID: 11976689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland.
    van den Hove MF; Croizet-Berger K; Jouret F; Guggino SE; Guggino WB; Devuyst O; Courtoy PJ
    Endocrinology; 2006 Mar; 147(3):1287-96. PubMed ID: 16306076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The chloride channel ClC-4 contributes to endosomal acidification and trafficking.
    Mohammad-Panah R; Harrison R; Dhani S; Ackerley C; Huan LJ; Wang Y; Bear CE
    J Biol Chem; 2003 Aug; 278(31):29267-77. PubMed ID: 12746443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chloride transport in the renal proximal tubule.
    Planelles G
    Pflugers Arch; 2004 Sep; 448(6):561-70. PubMed ID: 15258765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney.
    Kobayashi K; Uchida S; Mizutani S; Sasaki S; Marumo F
    J Am Soc Nephrol; 2001 Jul; 12(7):1327-1334. PubMed ID: 11423561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypertonicity increases CLC-5 expression in mouse medullary thick ascending limb cells.
    Pham PC; Devuyst O; Pham PT; Matsumoto N; Shih RN; Jo OD; Yanagawa N; Sun AM
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F747-52. PubMed ID: 15161605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chloride channels in the kidney: lessons learned from knockout animals.
    Devuyst O; Guggino WB
    Am J Physiol Renal Physiol; 2002 Dec; 283(6):F1176-91. PubMed ID: 12426234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.