These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1583012)

  • 1. A computer-based biomechanical analysis of the three-dimensional motion of cementless hip prostheses.
    Gilbert JL; Bloomfeld RS; Lautenschlager EP; Wixson RL
    J Biomech; 1992 Apr; 25(4):329-40. PubMed ID: 1583012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical testing system to determine micromotion between hip implant and femur accounting for deformation of the hip implant: Assessment of the influence of rigid body assumptions on micromotions measurements.
    Leuridan S; Goossens Q; Roosen J; Pastrav L; Denis K; Mulier M; Desmet W; Vander Sloten J
    Clin Biomech (Bristol, Avon); 2017 Feb; 42():70-78. PubMed ID: 28110243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental method for the in vitro testing of the initial stability of cementless hip prostheses.
    Schneider E; Eulenberger J; Steiner W; Wyder D; Friedman RJ; Perren SM
    J Biomech; 1989; 22(6-7):735-44. PubMed ID: 2808455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses.
    Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH
    Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of porous coating, with and without collar support, on early relative motion for a cementless hip prosthesis.
    Keaveny TM; Bartel DL
    J Biomech; 1993 Dec; 26(12):1355-68. PubMed ID: 8308041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of femoral stem geometry on interface motion in uncemented porous-coated total hip prostheses. Comparison of straight-stem and curved-stem designs.
    Callaghan JJ; Fulghum CS; Glisson RR; Stranne SK
    J Bone Joint Surg Am; 1992 Jul; 74(6):839-48. PubMed ID: 1634574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method.
    Andreaus U; Colloca M
    Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the migration of a cemented hip prosthesis in an in vitro test.
    Maher SA; Prendergast PJ; Lyons CG
    Clin Biomech (Bristol, Avon); 2001 May; 16(4):307-14. PubMed ID: 11358618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and evaluation of a device for measuring three-dimensional micromotions of press-fit femoral stem prostheses.
    Bühler DW; Oxland TR; Nolte LP
    Med Eng Phys; 1997 Mar; 19(2):187-99. PubMed ID: 9203154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated CAD/CAM/robotic milling method for custom cementless femoral prostheses.
    Wen-ming X; Ai-min W; Qi W; Chang-hua L; Jian-fei Z; Fang-fang X
    Med Eng Phys; 2015 Sep; 37(9):911-5. PubMed ID: 26210779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Migration and cyclic motion of a new short-stemmed hip prosthesis--a biomechanical in vitro study.
    Westphal FM; Bishop N; Honl M; Hille E; Püschel K; Morlock MM
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):834-40. PubMed ID: 16806616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro stability of cemented and cementless femoral stems with compaction.
    Chareancholvanich K; Bourgeault CA; Schmidt AH; Gustilo RB; Lew WD
    Clin Orthop Relat Res; 2002 Jan; (394):290-302. PubMed ID: 11795746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative micromotion of fully and proximally cemented femoral stems.
    Bachus KN; Bloebaum RD; Jones RE
    Clin Orthop Relat Res; 1999 Sep; (366):248-57. PubMed ID: 10627742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient computational method for assessing the effects of implant positioning in cementless total hip replacements.
    Bah MT; Nair PB; Taylor M; Browne M
    J Biomech; 2011 Apr; 44(7):1417-22. PubMed ID: 21295306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of porous coating and loading conditions on total hip femoral stem stability.
    Biegler FB; Reuben JD; Harrigan TP; Hou FJ; Akin JE
    J Arthroplasty; 1995 Dec; 10(6):839-47. PubMed ID: 8749770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous and multisite measure of micromotion, subsidence and gap to evaluate femoral stem stability.
    Gortchacow M; Wettstein M; Pioletti DP; Müller-Gerbl M; Terrier A
    J Biomech; 2012 Apr; 45(7):1232-8. PubMed ID: 22356845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new technique to measure micromotion distribution around a cementless femoral stem.
    Gortchacow M; Wettstein M; Pioletti DP; Terrier A
    J Biomech; 2011 Feb; 44(3):557-60. PubMed ID: 20934705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for quantitative analysis of the primary stability in uncemented hip prostheses.
    Monti L; Cristofolini L; Viceconti M
    Artif Organs; 1999 Sep; 23(9):851-9. PubMed ID: 10491034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of cemented and cementless prostheses.
    Jasty M; Burke D; Harris WH
    Chir Organi Mov; 1992; 77(4):349-58. PubMed ID: 1297569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromotion-induced peri-prosthetic fluid flow around a cementless femoral stem.
    Malfroy Camine V; Terrier A; Pioletti DP
    Comput Methods Biomech Biomed Engin; 2017 May; 20(7):730-736. PubMed ID: 28271719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.