These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1583012)

  • 21. Initial stability of a collarless wedge-shaped prosthesis in the femoral canal.
    Sharkey PF; Albert TJ; Hume EL; Rothman RH
    Semin Arthroplasty; 1990 Jul; 1(1):87-90. PubMed ID: 10149562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interface micromotion of uncemented femoral components from postmortem retrieved total hip replacements.
    Mann KA; Miller MA; Costa PA; Race A; Izant TH
    J Arthroplasty; 2012 Feb; 27(2):238-245.e1. PubMed ID: 21723696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The compression-rotation stem: an experimental study on the primary stability of a new revision hip stem.
    Kraenzlein J; Mazoochian F; Fottner A; Birkenmaier C; von Schulze Pellengahr C; Jansson V
    Proc Inst Mech Eng H; 2009 Jan; 223(1):45-52. PubMed ID: 19239066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micromotions in the primary fixation of cementless femoral stem prostheses.
    Gebauer D; Refior HJ; Haake M
    Arch Orthop Trauma Surg; 1989; 108(5):300-7. PubMed ID: 2783022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Full-field measurement of micromotion around a cementless femoral stem using micro-CT imaging and radiopaque markers.
    Malfroy Camine V; Rüdiger HA; Pioletti DP; Terrier A
    J Biomech; 2016 Dec; 49(16):4002-4008. PubMed ID: 27823803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of under-reaming on the cup/bone interface of a press fit hip replacement.
    Zivkovic I; Gonzalez M; Amirouche F
    J Biomech Eng; 2010 Apr; 132(4):041008. PubMed ID: 20387971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel transducer for the measurement of cement-prosthesis interface forces in cemented orthopaedic devices.
    Cristofolini L; Marchetti A; Cappello A; Viceconti M
    Med Eng Phys; 2000 Sep; 22(7):493-501. PubMed ID: 11165147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone remodeling around total hip implants.
    Smolinski P; Rubash HE
    Crit Rev Biomed Eng; 1992; 20(5-6):461-83. PubMed ID: 1486786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of the fixation region of a press-fit hip endoprosthesis on the stress-strain state of the "bone-implant" system.
    Levadnyi I; Awrejcewicz J; Goethel MF; Loskutov A
    Comput Biol Med; 2017 May; 84():195-204. PubMed ID: 28390287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative study of the initial stability of cementless hip prostheses.
    Schneider E; Kinast C; Eulenberger J; Wyder D; Eskilsson G; Perren SM
    Clin Orthop Relat Res; 1989 Nov; (248):200-9. PubMed ID: 2805480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of relative micromotion at the stem-cement interface in total hip replacement.
    Zhang HY; Brown L; Barrans S; Blunt L; Jiang XQ
    Proc Inst Mech Eng H; 2009 Nov; 223(8):955-64. PubMed ID: 20092093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of cement on hip stem fixation: a biomechanical study.
    Çelik T; Mutlu İ; Özkan A; Kişioğlu Y
    Australas Phys Eng Sci Med; 2017 Jun; 40(2):349-357. PubMed ID: 28321636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Biomechanical characteristics of hip prosthesis in hip arthroplasty treating elderly patients with Evans I-III intertrochanteric fracture of femur].
    Liu WG; Liu SH; Yin QF; Xiao SP; Wang SJ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2013 Feb; 35(1):108-11. PubMed ID: 23472858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of tibial stem design on component micromotion in knee arthroplasty.
    Stern SH; Wills RD; Gilbert JL
    Clin Orthop Relat Res; 1997 Dec; (345):44-52. PubMed ID: 9418620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. No effect of femoral offset on bone implant micromotion in an experimental model.
    Amirouche F; Solitro G; Walia A
    Orthop Traumatol Surg Res; 2016 May; 102(3):379-85. PubMed ID: 26970866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new technique for morphologic measurement of the femur. Its application for Japanese patients with osteoarthrosis of the hip.
    Miura T; Matsumoto T; Nishino M; Kaneuji A; Sugimori T; Tomita K
    Bull Hosp Jt Dis; 1998; 57(4):202-7. PubMed ID: 9926259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.
    Chong DY; Hansen UN; Amis AA
    J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pre-clinical testing of hip prosthetic designs: a comparison of finite element calculations and laboratory tests.
    Verdonschot NJ; Huiskes R; Freeman MA
    Proc Inst Mech Eng H; 1993; 207(3):149-54. PubMed ID: 8117366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.