BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15830133)

  • 1. Evaluation of five ab initio gene prediction programs for the discovery of maize genes.
    Yao H; Guo L; Fu Y; Borsuk LA; Wen TJ; Skibbe DS; Cui X; Scheffler BE; Cao J; Emrich SJ; Ashlock DA; Schnable PS
    Plant Mol Biol; 2005 Feb; 57(3):445-60. PubMed ID: 15830133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene identification programs in bread wheat: a comparison study.
    Nasiri J; Naghavi M; Rad SN; Yolmeh T; Shirazi M; Naderi R; Nasiri M; Ahmadi S
    Nucleosides Nucleotides Nucleic Acids; 2013; 32(10):529-54. PubMed ID: 24124688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality assessment of maize assembled genomic islands (MAGIs) and large-scale experimental verification of predicted genes.
    Fu Y; Emrich SJ; Guo L; Wen TJ; Ashlock DA; Aluru S; Schnable PS
    Proc Natl Acad Sci U S A; 2005 Aug; 102(34):12282-7. PubMed ID: 16103354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio gene finding in Drosophila genomic DNA.
    Salamov AA; Solovyev VV
    Genome Res; 2000 Apr; 10(4):516-22. PubMed ID: 10779491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of gene prediction software using a genomic data set: application to Arabidopsis thaliana sequences.
    Pavy N; Rombauts S; Déhais P; Mathé C; Ramana DV; Leroy P; Rouzé P
    Bioinformatics; 1999 Nov; 15(11):887-99. PubMed ID: 10743555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GeneGenerator--a flexible algorithm for gene prediction and its application to maize sequences.
    Kleffe J; Hermann K; Vahrson W; Wittig B; Brendel V
    Bioinformatics; 1998; 14(3):232-43. PubMed ID: 9614266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G-quadruplex (G4) motifs in the maize (Zea mays L.) genome are enriched at specific locations in thousands of genes coupled to energy status, hypoxia, low sugar, and nutrient deprivation.
    Andorf CM; Kopylov M; Dobbs D; Koch KE; Stroupe ME; Lawrence CJ; Bass HW
    J Genet Genomics; 2014 Dec; 41(12):627-47. PubMed ID: 25527104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prokaryotic gene prediction using GeneMark and GeneMark.hmm.
    Borodovsky M; Mills R; Besemer J; Lomsadze A
    Curr Protoc Bioinformatics; 2003 May; Chapter 4():Unit4.5. PubMed ID: 18428700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic methods of identifying genes in prokaryotic genomes: connections to the HMM theory.
    Azad RK; Borodovsky M
    Brief Bioinform; 2004 Jun; 5(2):118-30. PubMed ID: 15260893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES.
    Borodovsky M; Lomsadze A
    Curr Protoc Bioinformatics; 2011 Sep; Chapter 4():4.6.1-4.6.10. PubMed ID: 21901742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum.
    Chen Y; Hao X; Cao J
    J Integr Plant Biol; 2014 Feb; 56(2):133-50. PubMed ID: 24472286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomic analysis of the Sm gene family in rice and maize.
    Chen Y; Cao J
    Gene; 2014 Apr; 539(2):238-49. PubMed ID: 24525402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.
    Zhang X; Zong J; Liu J; Yin J; Zhang D
    J Integr Plant Biol; 2010 Nov; 52(11):1016-26. PubMed ID: 20977659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of B-class floral homeotic gene function between maize and Arabidopsis.
    Whipple CJ; Ciceri P; Padilla CM; Ambrose BA; Bandong SL; Schmidt RJ
    Development; 2004 Dec; 131(24):6083-91. PubMed ID: 15537689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Features of Arabidopsis genes and genome discovered using full-length cDNAs.
    Alexandrov NN; Troukhan ME; Brover VV; Tatarinova T; Flavell RB; Feldmann KA
    Plant Mol Biol; 2006 Jan; 60(1):69-85. PubMed ID: 16463100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction.
    Sun W; Chen H; Wang J; Sun HW; Yang SK; Sang YL; Lu XB; Xu XH
    Funct Integr Genomics; 2015 Jan; 15(1):107-20. PubMed ID: 25388988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative computational analysis of nonautonomous helitron elements between maize and rice.
    Sweredoski M; DeRose-Wilson L; Gaut BS
    BMC Genomics; 2008 Oct; 9():467. PubMed ID: 18842139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings.
    Jia J; Fu J; Zheng J; Zhou X; Huai J; Wang J; Wang M; Zhang Y; Chen X; Zhang J; Zhao J; Su Z; Lv Y; Wang G
    Plant J; 2006 Dec; 48(5):710-27. PubMed ID: 17076806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize.
    Song J; Guo B; Song F; Peng H; Yao Y; Zhang Y; Sun Q; Ni Z
    Gene; 2011 Aug; 482(1-2):34-42. PubMed ID: 21640170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes.
    Lu M; Sun QP; Zhang DF; Wang TY; Pan JB
    Biochem Biophys Res Commun; 2015 Jun; 462(2):144-50. PubMed ID: 25937463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.